
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1992

Study of beamforming techniques for ultrasound
imaging in nondestructive testing
Sleiman Riad Ghorayeb
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Acoustics, Dynamics, and Controls Commons, Electrical and Electronics Commons,
Materials Science and Engineering Commons, and the Physics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ghorayeb, Sleiman Riad, "Study of beamforming techniques for ultrasound imaging in nondestructive testing " (1992). Retrospective
Theses and Dissertations. 9798.
https://lib.dr.iastate.edu/rtd/9798

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9798?utm_source=lib.dr.iastate.edu%2Frtd%2F9798&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

UMI 
MICROFILMED 1992 



www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 

to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor, tvll 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9220969 

Study of beamforming techniques for ultrasound imaging in 
nondestructive testing 

Ghorayeb, Sleiman Riad, Ph.D. 

Iowa State University, 1992 

U M I  
300 N. ZeebRd. 
Ann Aibor, MI 48106 



www.manaraa.com



www.manaraa.com

Study of beamforming techniques for ultrasound imaging 

in nondestructive testing 

by 

Sleiman Riad Ghorayeb 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Electrical Engineering and Computer Engineering 
Major: Electrical Engineering (Communication Systems and Signal Processing) 

Approved; 

For the Major Department 

For the Graduate College 

Members of the Committee: 

In Charge of Major Work 

Iowa State University 
Ames, Iowa 

1992 

Copyright © Sleiman Riad Ghorayeb, 1992. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS iv 

ABSTRACT vi 

CHAPTER 1. INTRODUCTION 1 

Background and Motivation 1 

Brief Literature Review 1 

Scope of the Dissertation 6 

CHAPTER 2. REVIEW OF ULTRASOUND PRINCIPLES AND 
IMAGING TECHNIQUES 10 

Creation, Propagation and Scattering of Ultrasound Waves 10 

Overview of Ultrasound Imaging 20 

CHAPTER 3. REVIEW OF THE FINITE ELEMENT METHOD 29 

Brief Review of Some Numerical Methods 29 

The Building Blocks of FEM 32 

Governing Equations 34 

Discretization, Energy Functional and Interpolation 37 

Minimization and Assembly 40 

CHAPTER 4. S AFT FORMULATION AND IMPLEMENTATION 44 

Introduction 44 

The Concept of SAFT 44 



www.manaraa.com

iii 

The Formulation of SAFT 45 

Experimental Set-up 48 

Description of the SAFT Algorithm 49 

Analysis of Results 52 

Anisotropy Effects 56 

Finite Element Simulation 61 

CHAPTER 5. BEAMFORMING: A DECONVOLUTION ALGORITHM 69 

Description of General Beamforming 69 

Data Independent Beamformer 75 

Least-Squares Estimation 77 

Singular-Value Decomposition 79 

CHAPTER 6. RESULTS OF DEFECT PREDICTION 83 

Filter Implementation and Procedure 84 

Prediction and Reconstruction: Tests and Results 86 

Discussion of Results 106 

CHAPTER 7. CONCLUSION 128 

Milestones and Major Work Accomplishments 128 

Future Work 130 

BIBLIOGRAPHY 132 

APPENDIX A. SAFT PROGRAMS 141 

APPENDIX B. BEAMFORMING PROGRAM 160 

APPENDIX C. OTHER PROGRAMS AND SUBROUTINES 188 



www.manaraa.com

iv 

ACKNOWLEDGEMENTS 

In his masterpiece The Prophet, and speaking to a teacher. Philosopher 

Khalil Gibran wrote, and I quote: 

No man can reveal to you aught but that which 

already lies asleep in the dawning of your knowledge. 

The teacher who walks in the shadow of the temple, 

among his followers, gives not of his wisdom but 

rather of his faith and his lovingness. 

To my teacher and my mentor. Professor William Lord, I would like to 

extend my very special gratitude for the wisdom, the faith, and the confidence 

he instilled in me throughout my doctoral work. I would also like to thank 

him for the financial assistance he provided from the Palmer endowment 

during the latter part of my program. 

To Professor Satish Udpa, I would like to express a thank you note for 

his devotion and continuous advice and support which led to the selection of 

this research topic. 

To Professor Chester (Chip) Comstock, Jr., I would like to offer my 

deepest thanks for his uncountable help and constant encouragement during 

the whole period of my graduate studies. 

To Professor David Carlson who patiently listened to me when I 

regularly shared with him the latest in my research and provided me with his 

expertise knowledge in ultrasonic systems, thank you. 

To Professor David Holger, I am especially thankful for his provision, 

through the Center for Nondestructive Testing at Iowa State University, of 

the research assistants hip (U.S. Navy, Office of Naval Research, Contract # 



www.manaraa.com

V 

N0014-86-K-0799) during the first half of my doctoral program, and his 

persistent guidance which laid the grounds for the successful implementation 

and testing of the SAFT algorithm. 

Last, but not least, to Professor Loren Zachary, I also wish to express my 

sincere and profound gratitude for the technical assistance that he supplied 

during the development of the SAFT system. 

Thank you to all of the above people for their enthusiasm and their 

interest to serve on my graduate committee. 

Finally, to the people who really made a difference in my life... my 

family. My father Riad, my mother Sonia, my sister Ghada, and my brother 

Samer; I am perpetually grateful for their loving support and never-ending 

confidence which have influenced me to work hard and strive for excellence. 



www.manaraa.com

vi 

ABSTRACT 

Many of the innovations in modern materials testing technology make 

use of ultrasound. Therefore, the theory and application of ultrasound have 

become of extreme importance in nondestructive inspection of complete 

engineered systems. However, despite the fact that most of these ultrasound 

inspection techniques are based on well-established phenomena, two key 

problems pertaining to their application still remain unresolved. These 

problems can be identified as (1) the material being tested is assumed to be 

isotropic and homogeneous by nature, and (2) the scanning/data collection 

process, prior to the reconstruction scheme, is very time consuming. As a 

result, techniques for fast, accurate testing of anisotropic and non-

homogeneous media have been the focus of. attention in modern non­

destructive testing research. 

This dissertation first describes the development and implementation 

of a time domain synthetic aperture focusing technique (SAFT) to reconstruct 

flaws imbedded within Plexiglass™ and Graphite/Epoxy samples. A 

modification to the present SAFT algorithm is then proposed in order to 

improve the quality of the images produced by SAFT when applied to 

composites. In addition, since the finite element method (FEM) can be used 

to solve hyperbolic partial differential equations, which govern wave 

propagation, FEM solutions are used to mimic a SAFT measurement. That is, 

the FEM is used to simulate the action of a transducer array. This is done to 

study the sensitivity of parameters involved in the SAFT algorithm. Using 

the same FEM model as a test bed, the data independent beamformer, in its 

basic form, is studied to determine its performance in reducing data 

acquisition time. It is seen that this technique is capable of adjusting the 

weights of the interpolating filter (beamformer) to predict an incoming signal 

from a desired direction while discriminating against other signals from 

different directions. 

SAFT results indicate that the FEM model can be used as a Test Bed for 
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SAFT sensitivity studies, and point out the possible use of lateral 

displacement data for SAFT reconstruction. Extensive beamforming test 

comparisons reveal that the resulting optimal filters are indeed able to predict 

not only A-scan signals from a set of data produced by a nonuniformly spaced 

transducer baseline, based on one material geometry, but also A-scan signals 

from a data set produced by a nonuniformly spaced transducer baseline based 

on a different material geometry. This has particular significance for fast 

testing and imaging of isotropic and anisotropic materials in ultrasonic 

nondestructive evaluation techniques. 
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CHAPTER 1. INTRODUCTION 

Background and Motivation 

It is of crucial importance that the individual components, used to 

constitute the parts of complete engineered systems and structures, are free 

from damaging defects, such as porosity and cracks, and other possible causes 

of premature failure. 

During the last few decades, various methods have evolved and new 

techniques are presently being developed to assess the reliability and integrity 

of those structural and functional components. Ultrasonic nondestructive 

testing (NDT) has been one of the prominent technologies used for that 

purpose. However, ultrasonic testing has been (1) conditional in the sense 

that the material under test be isotropic and homogeneous in nature, and (2) 

time consuming as far as the scanning and the data collection processes are 

concerned prior to the material reconstruction scheme. 

The research objectives described in this dissertation focus on the 

following main three points: (1) to summarize some of the ultrasonic 

reconstruction methods developed in early years, such as SAFT, (2) to briefly 

discuss how the finite element method can be looked upon as a test bed for a 

typical NDT test, and finally, (3) to suggest a filtering/deconvolution 

technique called Beamforming to improve the scanning time process. 

Brief Literature Review 

Historically, ultrasound has been an excellent tool used for detecting 

flaws contained within solid materials. Characterizing these flaws, though, by 

their shape, size, and orientation, was a hard task. Image restoration 

techniques classified as flaw characterization methods were needed to form 

high quality images. 
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One technique which attempts to provide much more useful 

information, as far as the size and location of many material discontinuities 

than conventional ultrasonic displays, by improving the S/N ratio of the 

images, adopted the idea of synthetic aperture radar (SAR), since the concepts 

of wave physics of the microwave radar antenna and the ultrasonic 

transducer are quite similar. 

Early ultrasonic synthetic aperture research development is credited to 

Flaherty in 1967 [1]. Similar experimental work was applied in the medical 

field and developed by Burckhardt and his colleagues in 1974 [2]. Here the 

work was distinguished from the rest by the fact that no reference signal was 

needed in order to form the synthetic aperture image, which is usually the 

case in NDT and medical applications. 

In 1976, at the University of Michigan, Frederick and his colleagues 

presented the first version of the synthetic aperture focusing technique 

(SAFT) [3]. The report included a thorough overview ranging from the data 

acquisition hardware to the digital processing of the collected ultrasonic 

signals reflected off two side-drilled holes contained in an aluminum block. 

During the period of 1977 to 1979, more reports followed [4, 5, 6], under the 

direction of Frederick and Sydel. Every report presented a more improved 

version of the SAFT algorithm as applied to NDE of pressure vessels. These 

studies resulted in a very lengthy and explicit chapter, describing the basic 

concepts and fundamentals underlying the SAFT system, in addition to the 

evolution of the ultrasonic implementation along with very well interpreted 

experimental results. This work was presented by Seydel in 1982 [7]. 

In order to provide general rules for determining the processing 

parameters for various experimental situations, a study of a computer model 

of SAFT, when idealized data from one and two point reflectors are obtained, 

was presented by Johnson [8]. 
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Up to this point, the development of S AFT focused on the two-

dimensional case, but was easily extended to three [9]. By using the finite 

element method (FEM) to define the front surface geometry of the test 

specimen, the transducer scan path was arbitrarily varied by tilting the angle 

of the transducer, allowing the synthetic aperture to take full range of the 

values over the entire inspection field. 

Expressions for the transverse and longitudinal resolutions of SAFT 

were derived by Thomson in 1984 [10], and experimental results to support 

the theory were presented. A suitable aperture weighting function for the 

SAFT algorithm [11], was determined in order to minimize the sidelobe level 

introduced by SAFT, without significant loss of the lateral resolution. 

In 1986, Doctor and his colleagues [12] described the evolution of SAFT, 

as well as its flexibility, and a new operational angle-beam mode with a 3-D, 

line (pulse-echo) and tandem options of signal processing. Major 

improvements in the processing speed using special-purpose processors were 

also indicated. During that same year, Langenberg and his colleagues [13] 

presented an alternative SAFT processing scheme in terms of a Fourier 

domain algorithm. The newly developed twist to the conventional time-

domain SAFT was called Diffraction Tomography, This technique requires a 

planar two-dimensional measurement aperture and broadband pulse-echo 

ultrasonic transmission and reception [13]. The recorded data are Fourier 

transformed with respect to time and the aperture coordinates, mapped into 

the Fourier space of the area containing the defect, and finally, processed into 

object space with an inverse Fourier transform. The output is quantitatively 

given in terms of either the characteristic function of the defect volume or 

the singular function of the defect surface. This scheme was determined to 

have better potential for carrying out the mathematical operations 

numerically, and served as a means to predict incomplete data produced by 

limited data apertures and limited frequency bandwidths. A 3-D imaging 

system based on Fourier transform SAFT was further investigated by Mayer 

and his colleagues in 1989 [14]. Here the algorithm was implemented to 
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provide a high resolution graphics to display a 3-D reconstruction volume. 

Beamforming is an approach which is classified as a filtering process 

that can be applied to signals carried by propagating waves. The beamformer, 

in its simplest form, can be designed to pass signal components from a desired 

direction while isolating some others emanating from different directions, 

such as noise from interferers. The beamformer can either be deterministic 

(data independent), or adaptive (data dependent) and thus called statistically 

o p t i m u m .  

Rather than attempting to attribute the widespread number of 

developments in the many different research projects in beamforming, to 

their respective researchers, a brief review of the previous work pertaining to 

the area of interest that this work lies upon, is given. 

In a special issue [16], Van Veen and his colleague describe various 

beamformer processors, and provide the reader with an excellent overview of 

the signal processing contained in beamforming. A number of beamformers; 

namely, data independent, statistically optimum and partially adaptive, are 

discussed in depth with a few examples of the different applications relating 

to each of the aforementioned classifications, to support the theory. A section 

of the article is devoted to defining every aspect of the subject ranging from 

the basic terminologies and notations to the fundamental concepts 

underlying beamforming. 

In general, the output of a beamformer is given by a linear 

combination of the data collected by an array of sensors. Prior to the 

coherent summation, the data is conveniently multiplied by some weights 

which represent the acquired data. It should be mentioned, at this point, 

that S AFT can be classified as a special case of beamforming. In a data 

independent beamformer, the weights are designed in such a way that the 

response of the beamformer can be predicted, via an approximation, in any 

desired direction, and completely independent of the data statistical structure. 
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The design for such a beamformer is similar to that for the finite impulse 

response (FIR) filter design [17-18]. A related algorithm called the Constrained 

Least Mean Squares (CLMS), was derived by Frost [19]. This algorithm adjusts 

an array of sensors in real time to respond to a desired signal from a chosen 

direction while discriminating against noise received from other directions. 

The concept of adaptive systems working on the principle of minimizing the 

output noise power under the constrained response to specified directions, is 

also described in various papers [20-24]. One surprising result obtained by 

Buckley and his colleagues [24], is the observation that employing derivative 

constraints by linearly-constrained systems is highly dependent upon the 

location of the phase reference point of the array. Prior to this latter work, 

derivative constraints were applied to broadband element space antenna array 

processors [25]. Here the effect of derivative constraints was studied on the 

beamwidth in the look direction. It was determined that the beamwidth in 

that direction can be made as broad as desired and the beam separations can be 

defined without any concern for signal suppression in the event of signal 

reception between beams. Griffiths and colleagues [26] present an alternative 

approach to Frost's linearly constrained adaptive beamforming algorithm. 

The Generalized Sidelobe Canceller (GSC), as described in this paper, was used 

to both analyze the performance of Frost's algorithm and to suggest 

generalizations of the constrained beamforming method. 

Generalized adaptive beamforming is also discussed in length under a 

broad range of applications. It has been shown [27] that the techniques of 

adaptive filtering can be applied to processing the output of the individual 

elements in a receiving antenna array. This process also resulted in reduced 

sensitivity of the antenna array system to noisy interferers of unknown 

characteristics. Later, Applebaum and his colleague [28] realized that the 

initial adaptive array theory ignored the problem of incidental cancellation of 

the desired signal returns; so they examined a few constraining techniques for 

the response of the adaptive processor. 

A key assumption in all of the above beamforming work, is that the 
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interfering signals are not coherent with the desired signal. Shan and 

colleagues [29] introduced a new on-line adaptive array beamformer capable 

of working well even when the desired signal and interferers are coherent. 

Widrow and colleagues [30] suggested that coherent interference could be 

eliminated by movement of the sensor array via what is referred to as the 

"Duvall" beamformer and the "Spatial Dither" algorithm. An electronic 

version of that suggested technique was then presented [29], and was 

especially appropriate for fixed sensor structures. 

The effect of errors on adaptive beamforming is discussed by Cox [31]. 

These errors were found to pass through the beamformer like uncorrelated 

white noise. In this paper an improved adaptive beamformer was suggested, 

permitting simultaneous mixed (linear equality and quadratic inequality) 

constraints on the gain against the white noise. 

Recently, Wahlberg [32] compared three different approaches for 

finding the beamformer weights in single receiver adaptive arrays. The last of 

these approaches offers a much faster beamforming technique. In their study, 

the authors show how covariance matrix based methods can be used in 

adaptive beamforming applications where only output power measurements 

are available. By applying perturbation theory to the nominal beamformer 

weights, the covariance matrix of the sensor outputs was estimated. The 

proposed methods are non-iterative unlike their least mean square (LMS) 

counterpart. This, then, provides the potential to reduce the computational 

time required for typical steering applications. Experimental work has 

confirmed their newly developed techniques and offered similar null steering 

performance, with a significant reduction in the number of power 

measurement samples, when compared to adaptive LMS methods. 

Scope of the Dissertation 

To date, there has not been, to the best of the author's knowledge, any 

available method used in ultrasound imaging, neither in the medical nor in 
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the NDT fields, which is capable of "reconstructing" scanning baselines 

containing irregular coverage of the medium under test. In the interest of 

learning more about the newly developed beamforming technique and its 

possible role in NDT, this research work focuses on three main topics. These 

topics are (1) finite element modeling used as a scheme to simulate the 

ultrasound behavior in the medium of propagation, (2) synthetic aperture 

focusing techniques used to enhance the quality of the images produced by 

the scanning process, and (3) the study of a beamforming technique to 

reconstruct the missing records in a nonuniformly spaced scanning baseline. 

The latter part of this work is considered to be a new concept and represents, 

in the author's opinion, a valuable approach for future ultrasonic tool 

developments in both the medical and NDT industries. 

Following this introductory chapter, a moderately sufficient review of 

the most relevant background material on ultrasound principles and related 

imaging techniques, is the main concern of Chapter 2. 

Chapter 3 reviews the building blocks of the finite element method 

(FEM). It introduces the global equations that govern the modeling/ 

simulation process of ultrasound energy propagation and interaction with the 

medium in question, in addition to the necessary assumptions and boundary 

conditions imposed upon these equations. The choice of the energy 

functional, the discretization and interpolation procedures are also discussed 

in conjunction with the integration schemes that are employed. Special atten­

tion is given to the implementation of this very useful analysis method, in 

terms of transforming the theory into a practical computer tool. 

Chapter 4 discusses the formulation and implementation of the 

synthetic aperture focusing technique (SAFT). This chapter contains material 

from two papers. The first paper [47] introduces the concept of SAFT and 

underlying equations, and the assumptions and parameters involved in the 

processing scheme of this technique, A description of a laboratory system 

experimental set-up is also shown in addition to a quantitative comparison 
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made between two SAFT processed images of Plexiglass™ and 

Graphite/Epoxy samples. The various effects of anisotropy on SAFT, are 

discussed next in this chapter. Here, a more accurate SAFT implementation 

on composites is proposed. This alteration to SAFT involves the use of the 

slowness surface curves and their relationship to the stress-wave velocities 

present in the medium. The second paper [48] uses the finite element method 

(FEM) in order to simulate the action of a transducer array, and then use the 

resulting signals, along with SAFT, to reconstruct the reflectors under study. 

This work indicates that the resulting FEM model can indeed be valid as a 

"test bed" for SAFT sensitivity studies and points out to the possibility of 

using the lateral displacement data in order to improve the SAFT resolution. 

The body of this dissertation revolves around Chapters 5 and 6. 

Chapter 5 introduces the basic concepts of beamforming. It then branches out 

to give a detailed description of one beamforming technique, namely, the 

Data Independent (DI) Beamformer, which will eventually become the center 

of attention of this work. By employing the theoretical as well as the practical 

approaches underlying DI, one can design an "optimal" beamformer. This is 

done through the determination of a minimum norm solution. The method 

of Least Squares is used for that purpose. 

The actual design and testing of the beamformer is demonstrated in 

Chapter 6. The experimental development and defect prediction and recons­

truction procedures are detailed. The effects of transducer spacings and 

material geometry on the beamformer are also discussed through a 

comparison between the predicted and actual A-scan signals. Images of the 

beamformer filters and their corresponding predicted B-scan images are 

shown for situations where 50%, 26%, 13% and 3% of the data are kept. In 

addition, plots of the relative mean-squared error between the reconstructed 

images and the actual images are shown in order to asses the reliability of the 

beamforming technique. The sizing and the location of the flaws in the 

material under test are also estimated and compared with the actual values. 

FEM-simulated pulse-echoes are used for all of the tests performed by the 
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beamformer. 

Finally, Chapter 7 discusses the results obtained in Chapter 6 and 

highlights the major accomplishments provided by this work. It also points 

out possible future extensions and suggestions pertaining to this research 

topic. 

Reprints of the programs and subroutines used in this research are 

contained in the appendices of this dissertation. 



www.manaraa.com

10 

CHAPTER 2. REVIEW OF ULTRASOUND PRINCIPLES 
AND IMAGING TECHNIQUES 

In this chapter, the basic concepts behind ultrasound waves are 

introduced using simplified definitions. Enough information is given for a 

reasonable understanding of the most current ultrasonic nondestructive 

testing imaging techniques. 

For years, ultrasound methods have been used to cover all aspects of 

NOT research ranging from the detection of internal cracks in materials to 

small sub-surface defects 133]. These methods have played a major role in 

quality inspection of partially manufactured components as well as fully 

finished sections of a larger apparatus. 

Ultrasound waves propagate through solid media in several ways. The 

creation, propagation and scattering of these waves are considered next. 

Creation, Propagation and Scattering of Ultrasound Waves 

Ultrasonic wave generation is mostly noticeable when the piezo­

electric (pressure-electric) effect is present [33]. This effect is the result of 

dilating or constricting certain crystalline materials when subjected to a 

voltage across the faces of the crystal. Conversely, when mechanical strain is 

applied to the crystal, an electrical field is created. These piezo-electric 

materials constitute the basis of electro-mechanical transducers. A large 

number of piezo-electric materials, including man-made ceramics and 

polymers [35], have been used in the construction of modern ultrasound 

transducers. However, the original material used was, and still is, natural 

quartz [33, 35]. When a disc of piezo-electric material is subjected to an 

alternating voltage across its thickness, vibration, caused by contraction and 

expansion of the disc, gives rise to a compressional wave normal to the disc's 

surface. When the transducer crystal vibrates at its natural frequency, wave 

generation is most efficient. As mentioned earlier, piezo-electric materials 
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play the double-role of generating as well as detecting sound waves. As a 

propagating ultrasonic wave is intercepted by a transducer crystal, vibration of 

the crystal will again occur, causing an alternating current to be produced 

across its faces. This is the reason why many ultrasonic NDT experiments use 

only one transducer to act as both transmitter and receiver, hence bearing the 

name of pulse-echo. Usually, while ultrasound is transmitted as a series of 

pulses of extremely short duration, the crystal can detect the reflected waves 

during the time interval between those transmissions. 

Ultrasound waves are elastic waves which can be transmitted through 

both fluids and solids. One of the required criteria of ultrasound is that the 

medium be continuous for the energy to propagate freely [34]. Any 

obstruction such as internal voids, delaminations, inclusions or cracks will 

interfere with the transmission/reflection of ultrasound signals. These 

ultrasound waves used in the NDI of materials, usually operate in the 0.5 to 

20 MHz frequency range. 

When these ultrasound waves propagate in a fluid medium, they are 

of a compressional type, in which case the wave traverses in the longitudinal 

direction of propagation. However, in solids, a shear component can arise 

where part of the wave displacement is normal to that direction of 

propagation. Elastic surface waves, called Rayleigh waves, can also occur. In a 

particular fluid, the longitudinal velocity of ultrasound waves is given by 

where Va is the adiabatic volume elasticity and p is the density. When the 

ultrasonic wave enters the solid material, the expression for its longitudinal 

velocity is not as trivial. If E represents the modulus of elasticity (Young's 

modulus), and k is the Poisson's ratio, then Vc becomes 

(2.1) 
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V P(1+K)(1-2K) 

E(1-K) 
(2.2) 

Some representative typical propagation mean longitudinal velocities in 

various media are given in Table 2.1. 

Table 2.1. Ultrasound longitudinal velocities in some materials 

On the other hand, the shear wave velocity detected in the solid portion of 

propagation, is approximately half the longitudinal wave velocity and is 

given by 

where G represents the modulus of rigidity of the material. 

In an attempt to distinguish the compressional component (L-wave) 

from the shear component (S-wave) in a conventional ultrasonic NDT 

experiment, Ludwig [38] and You [39] presented results of some situations 

where analytical solutions are not usually available. A numerical technique. 

Material Mean Velocity 

Vc (m/sec) 

Air 

Water 

Aluminum 

Plexiglass™ 

Steel 
Graphite/Epoxy (0°/90°) 

330 

1500 

1750 

2750 

5810 

2919 

(2.3) 
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namely, finite element modeling (FEM), was used to visualize the 

interactions of ultrasonic waves with simple defects. In one example [39], a 

20cm X 10cm Aluminum specimen with a rectangular slot of 8mm x 0.4mm 

located at the center, was considered (Figure 2.1). The block was subjected to a 

point source input having a raised cosine waveform shape. Displacement 

plots revealed that compressional, shear, surface and head waves all 

originated from the same source, and deviated from each other as they 

propagated further inside the material, due to their dissimilar propagating 

velocities. Figure 2.2 shows the longitudinal wave as it is intercepted by the 

defect, forming a strong reflection at the surface. Once this L-wave passes the 

slot, an incident shear pulse can then be seen. The most prominent shear 

waves are the ones diffracted by the tips of the crack. These, in fact, result 

from mode-converted shear waves which arise when the L-waves interact 

with the tips of the crack. As will be seen later, this concept will help further 

in determining the crack tip locations, and will ultimately provide us with a 

better sizing scheme. 

As sound propagates through a material, its intensity, I, generally 

diminishes with the distance of propagation z [36], according to 

I = I„e"' (2.4) 

where Iq is the intensity at z=0 (surface of the material). Unlike the velocity of 

sound, the attenuation coefficient, a, depends highly on the frequency and 

increases with an increase in frequency. This is especially true during the 

inspection of polymeric materials where the frequency range 2 to 5 MHz is 

used. In many common fluids, however, such as water, the attenuation is 

primarily due to viscous absorption, and in these cases the attenuation is 

proportional to the square of the frequency. This limitation on frequency has 

different impacts on equipment performance. These impacts are due to the 

fact that the frequency, f, along with the velocity of sound, v, in a specific 

medium, determine the wavelength, X, of the ultrasonic pulse. Note that the 
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Figure 2.1. Sample geometry used for the study of the 
L-wave/defect interactions (You, 1991) 
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TIME = 8.000 (MICROSECONDS) 

Figure 2.2. (continued) 
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TIME = 12.000 (MICROSECONDS) 

Figure 2.2. (continued) 
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TIME = 16.000 (MICROSECONDS) 
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Figure 2.2. (continued) 
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TIME = 20.000 (MICROSECONDS) 
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Figure 2.2. (continued) 
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wavelength is kept as short as possible to improve axial resolution [37]. The 

equation relating these three variables is given by 

Table 2.2 gives the wavelengths of compressional sound waves in some 

materials at various frequencies. 

Table 2.2. Ultrasound longitudinal wavelengths in some materials 

Material X (mm) for frequencies (MHz) of 

1.25 2.5 5.0 10.0 

Air 0.26 0.13 0.066 0.033 

Water 1.20 0.60 0.30 0.15 

Aluminum 4.95 2.48 1.24 0.62 

Plexiglass™ 2.20 1.10 0.55 0.275 

Steel 4.65 2.32 1.16 0.58 
Graphite/Epoxy (0°/90°) 2.335 1.167 0.583 0.29 

From Table 2.2, it is seen that the higher the frequency the better the 

resolution, which is the trade-off for having high attenuation and for the 

sound beam not being able to propagate as deeply in the material as the lower 

frequency. For example, defects in a Plexiglass"''" block of sizes greater than 

0.275 mm can be detected by an ultrasonic beam with a center frequency of 10 

MHz, but if these defects are larger than 2.2 mm, an ultrasound beam with a 

center frequency of 1.25 MHz has to be used. 

Two last, but important aspects of sound wave propagation are the 

Reflectivity, or in more familiar terms, the Reflection Coefficient, R; and the 

the Transmission Coefficient, T. The reflection coefficient and the transmis-
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The acoustic impedance, Z, of a certain medium, is defined as the 

product of the compressional sound velocity, v, and the medium density, p, 

as in 

Z =  v ,p  (2 .6)  

Listed in Table 2.3 are some values of acoustic impedances for a variety of 

media. 

Table 2.3. Acoustic impedances for various media 

Medium Acoustic Impedance 
(106. kg. m'2. s'l) 

Air 0.0004 

Water 1.50 

Aluminum 16.77 

Plexiglass"''''*^ 3.245 

Steel 45.72 

Graphite/Epoxy (0°/90°) 4.641 

The reflection coefficient, R, for a normally incident ultrasound beam 

propagating through two interfacing media with acoustic impedances, Zj and 

Zzis given by 

^2" 

The corresponding transmission coefficient, T, is given by 
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Table 2.4 gives the reflectivity and the transmittivity at normal incidence for a 

combination of media interfaces. 

Table 2.4. Reflectivity and transmittivity of normally incident 

ultrasonic waves for various media interfaces 

Media Interface Reflectivity Transmittivity 

Air-Water 0.9995 0.0005 

Water-Steel 0.937 0.0635 

Water-Aluminum 0.836 0.1642 

Water-Gr/Ep(0V90°) 0.512 0.4885 

Water-Plexiglass'''" 0.368 0.6322 

It is seen from Tables 2.3 and 2.4, that the greater the difference of the acoustic 

impedances of two adjoining media, the greater the amount of reflection 

coefficients at their respective junction. Conversely, the greater the 

reflectivity at the interface, the smaller the transmission coefficient of the 

propagating wave. Finally, it is important to note that the amount of sound 

reflected from and transmitted through an object depends not only on the 

difference between the acoustic impedances [36] of that object and its 

immediate vicinity, but also on the size, shape and orientation of the object. 

Overview of Ultrasound Imaging 

Now that the theory of sound waves has been investigated, the basic 

concepts underlying the imaging techniques using ultrasound are discussed. 

The images produced by ultrasonic waves are unique since they represent the 

internal interaction with the mechanical properties of defects and other 

features in materials, and hence, serve as a powerful tool in modern NDT 

research. This section is intended to cover a brief overview of some of the 

imaging methodologies involved in the application of defect characterization. 
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A basic reflection imaging arrangement for a typical flaw detector is 

shown in Figure 2.3. The apparatus consists of a digital sampling oscilloscope, 

where the signals are usually displayed, a motorized transducer holder 

mounted on a water tank, and a puiser/receiver unit used to transmit 

ultrasonic pulses and amplify the return echoes. All of this equipment is 

controlled by acquisition software running on a portable computer. The idea 

behind the data collection is simple. When transmission is triggered, the 

transducer converts the electrical pulse into a mechanical vibration at the 

chosen frequency, emitting a wavefront. When this wavefront hits a 

discontinuity, a scattered wave is received by the same probe (or a different 

probe, depending on the application) and the resultant energy is converted 

back from mechanical pressure to an electrical signal and then displayed on 

the CRT screen. 

There are several ways in which received signals can be displayed in 

order to extract the necessary information describing any particular medium 

during a typical ultrasonic test. Ideally, the displayed signal represents the 

reflectivity, as a function of time, of the workpiece, where time is a figure of 

the various depths in the specimen [40]. This display of the reflectivity as a 

function of time (or depth) is the most commonly used system and is known 

as the A-scan signal. This signal is actually the result of deflecting the beam 

(of a CRT) that represents the reflectivity versus depth [41]. A typical A-scan of 

a Plexiglass™ block containing two slots is shown in Figure 2.4. The largest 

pulse at the left-hand side corresponds to the front wall echo of the sample, 

and the following "blips" correspond to the echoes emanating from both 

defects and the back wall, respectively. The amplitude of these echoes is 

generally proportional to the size of the reflected surface but is usually 

affected by the attenuation effects introduced by both the travelled distance 

and the inherent composition of the material itself. 

The second type of display is the most popular one. The B-scan is used 

to depict the reflectivity of a two-dimensional slice through a portion of the 

structure [42]. This system enables the recording of a defect location within a 



www.manaraa.com

22 

Tektronix 2430A Dig. Ose. rektronix TM5006 

RCVR PLSR 

EXT 
TRIG 

out 

Transducer  
Waveguide  

Water Tank 

Macintosh 

STEPPING MOTOR KLIN6ER CC 1.2 

Figure 2.3. Basic reflection imaging apparatus for a typical 
ultrasound flaw detector (Ghorayeb, 1991) 
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Figure 2.4. Example of a typical A-scan taken from a Plexiglass™ 
sample containing two slots 
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material. The data for this system are acquired by a transducer scanning in a 

linear fashion and at a constant velocity. The system is illustrated in Figure 

2.5. Note that a B-scan is nothing more than the result of a family of 

successive A-scans taken at different transducer positions during which the 

transducer is assumed to be essentially stationary when the echoes are being 

acquired. Figure 2.6 illustrates a B-scan for the same Plexiglass^" sample 

whose A-scan was shown in Figure 2.4. 

Processing a set of consecutive B-scans results in a plan view, or a 

volumetric display, of the medium under test. This method is termed C-scan. 

C-scarming can also be interpreted as the arrangement of the individual A-

scans in a raster data collection configuration. Raster scanning is shown in 

Figure 2.7. 

Once the raw data (A-scans, B-scans or C-scans) have been collected, it is 

necessary to reconstruct the images produced in order to obtain maximum 

resolution in both the lateral and the longitudinal directions. Various 

reconstruction schemes have been introduced throughout the years. The 

synthetic aperture focusing technique (SAFT) is one of them [7]. It is a 

method used to improve the lateral resolution of unrectified ultrasonic data. 

The theory and application of this method is thoroughly described in Chapter 

4. Although SAFT enhances the lateral resolution, expressions that 

determine both the lateral as well as the longitudinal resolutions have been 

derived [10]. However, since intensive computational processing was still a 

major requirement of SAFT, other reconstruction techniques, involving the 

idea of deconvolution, were investigated [43]. Wiener filtering and the 

maximum entropy method (MEM) have been shown to give higher lateral 

resolution than SAFT processing, as well as a unique improvement in 

longitudinal resolution. Real-time SAFT systems were also studied on 

different occasions [44, 45], in order to minimize the time it takes for the 

conventional SAFT to compute an image. Hall and his colleagues [44] focused 

their attention on the acceleration of the computationally intensive coherent 

summation SAFT algorithm. Their work essentially dealt with successfully 
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Figure 2.6. B-scan grey level plot for the same Plexiglass^" sample 
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Figure 2.7. Method of raster scanning the surface of a sample 
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deploying SAFT in a commercial environment to achieve rapid imaging, 

which allows the operator to make timely judgments with respect to 

specimen integrity, and eventually reducing the costs involved with reactor 

in-service inspection. In a similar fashion, Ozaki and his colleagues [45] have 

devised a new way to implement the SAFT algorithm and have developed a 

real-time ultrasonic imaging system that provides, for any object size, a cross-

sectional image of an object without any interruption. The resulting images 

were composed of an assembly of A-scans, and displayed as scroll pictures on 

a cathode ray tube (CRT) with no interruption regardless of the object size. 
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CHAPTER 3. REVIEW OF THE HNITE ELEMENT METHOD 

Today's engineers, scientists and applied mathematicians, are 

frequently faced with the determination of solutions to complex problems. 

Computer models have been effectively used to analyze, and thus interpret 

the many physical and mathematical aspects underlying these intricate 

systems. Some of the areas of application include [52] fluid and solid 

mechanics, heat transfer, electrical and magnetic fields and vibratory 

potentials. During the last two decades, analyses of such processes have 

rapidly focused on the finite element method (FEM) as the analytical tool that 

can be used efficaciously to study the various models of interest. 

With the attention focused on ultrasonic NDT, it is very important to 

have a complete insight on the behavior of the elastic waves as they 

propagate in solid materials and interact with internal features such as 

porosities, defects, grain structures and layers. In order to study the physics 

underlying these phenomena, in-depth understanding of forward models, 

used to accurately simulate both the medium and the energy interactions 

with the internal features, is essential. These forward models provide much 

of the needed information relative to inverse characterization of the defects. 

One of this chapter's objectives is to provide a brief, but yet sufficient, 

description of some of the numerical methods used to solve for the forward 

models. A review of the FEM technique and its role in ultrasonic NDT, is 

then presented in a more elaborate fashion. 

Brief Review of Some Numerical Methods 

In ultrasonic NDT, the art of obtaining qualitative as well as 

quantitative information about the physical shape and orientation of 

unknown defects in materials, from simple ultrasonic measurements, is most 

challenging [54]. Over the past few decades, numerous hypotheses have been 

developed to interpret how ultrasound interacts with defects in elastic solids. 
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In all cases, the aim was to determine an exact solution to the problem; 

however, most of the methods acquired a certain level of inherent 

limitations. 

In the method of separation of variables, the wave equation has to be 

decomposable (separable) in certain coordinate systems. The method proved 

to give exact solutions for problems with simple obstructions such as a permy-

shaped crack [53], spherically-shaped inclusions [55, 56], or cylindrical 

discontinuities [57, 58]. Elastic wave propagation in isotropic [59, 60] and 

transversely isotropic media was also predicted through the use of semi-

numerical techniques involving this method. However, in cases where 

arbitrary shaped defects are present, or when the wave fields encounter some 

sort of inhomogeneity in the material, these approaches are unable to provide 

exact solutions to these otherwise more complicated situations. Instead, 

integral equation based techniques can be considered. 

The basis for the Kirchhoff approximation is to use the fields generated 

by the incident and reflected waves that are produced off an infinite plane 

reflector (half-space) to approximate those found on the finite reflector [61]. It 

has been shown [62], that the Kirchhoff approximation does a very good job of 

describing a crack size and fits the flaw to an equivalent flat elliptical crack 

shape. Note that the Kirchhoff approximation is a method that can be applied 

to high frequency problems where the defect size is large compared with the 

wavelength. Also, those results based on this method have been determined 

for perfect reflectors like flat cracks. So if the scattering response is to be 

obtained for a volumetric type defect, such as an inclusion, more simplifying 

assumptions have to be made. 

One approximation that has been useful in this respect is the Born 

approximation. Born is a weak scattering approximation. Unlike the 

Kirchhoff approximation, it is based on the assumption that the scatterer is 

small and that the scattered field is negligible compared with the incident 
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field inside the scatterer [39]. It further assumes that the material properties of 

the inclusion are not very different from those of the host. Although 

excellent results have been obtained using these two methods either 

separately [63], or in a unified fashion [54], neither Born nor Kirchhoff 

approximations would be applicable to situations where the size of arbitrary 

shaped flaws is comparable with the wavelength. 

The boundary element method (BEM) [64, 65] is one of the various 

techniques used for this type of application and requires only the surface of 

the scatterer to be discretized into a number of boundary elements. A set of 

equations, with unknowns formed by the nodal displacements, is produced. 

These equations are usually solved using fundamental solutions that produce 

singularities at the point under consideration. Lately, this technique has been 

applied extensively in NDT for problems dealing with three-dimensional 

elastic waves radiation and scattering from arbitrary shaped and planar 

scatterers [66, 67]. An inherent advantage of BEM is that it can be applied on 

scatterers in infinite solids. The one drawback of the method, however, is that 

it can only be applied on isotropic materials where fundamental solutions are 

available. 

Another technique that can be used when the dimension of the defect 

is comparable with the wavelength is the finite difference method (FDM). 

This method is not based on solving the initial value problem. It is rather 

classified as a direct method [68]. When used to solve partial differential 

equations, FDM uses an equal mesh point spacing [69] to approximate the 

unknowns, representing the field values of the mesh nodes, through a set of 

difference equations based on the Taylor series expansion. Modifying the 

series of the field values in the time domain into an "extrapolated" form 

provides a scheme to carry out the time stepping process. FDM solution 

approaches were developed in ultrasonic NDT research by Bond [70, 71], Bond 

et al. [72], Harker [73], Harumi [74] and Harumi et al. [75]. Although elastic 

wave propagation in these studies was successfully predicted, a main 

difficulty in the use of the conventional FDM lies in the incorporation of 

the boundary conditions [69]. Since the differential equations, representing 
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the system, are usually approximated directly by the difference scheme, it is 

necessary to satisfy both the essential and the natural boundary conditions. 

The fact that FDM requires a uniform mesh topology, poses a restriction on 

the form in which differencing is carried out, which creates a difficulty in 

maintaining symmetry properties in the coefficient matrix, and thus applying 

the boundary conditions to arbitrary boundaries, limits the generality of the 

approach. 

As mentioned earlier, in order to simulate accurately a real ultrasonic 

testing system, a robust forward model has to be capable of handling material 

properties, such as anisotropy and attenuation, and awkward geometries. 

Both the transmitter and the receiver models should also be embodied in the 

overall prototype. The finite element modeling technique has been 

developed [38] with these intentions kept in mind. The following section 

describes the major points that constitute the building blocks of the finite 

element method (FEM). 

The Building Blocks of FEM 

When physical problems are analyzed through the application of the 

finite element method, there are certain basic ingredients [76] that constitute 

the path to be followed regardless of the particular area of application. This 

section briefly introduces these basic ingredients and points out, in general, 

the areas where FEM has been successfully applied. 

Applying FEM to a mathematical or a physical system involves several, 

implicit or explicit, distinct steps or building blocks. These can be identified as 

[76]: 

(1) Discretization 

(2) Interpolation 

(3) Elemental formulation 

(4) Assembly 
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(5) Constraints 

(6) Solution 

(7) Computation of derived or secondary unknowns 

These steps are of great importance when establishing and following the 

procedure that leads to the solution of the finite element model. In more 

concise terms, these seven steps can be broken down into two basic ideas (or 

categories): 

(1) Construct the so-called weak formulation of a boundary value 

problem, and 

(2) Decompose the domain into smaller subdomains, or elements. 

There are many important classes of physical problems to which these 

two ideas have been applied. One of the most important and successful areas 

is solid mechanics [77, 78]. Here the weak formulation of the boundary value 

problem is associated with the energy principles in the statics of solids. 

Furthermore, representing large structures as a number of smaller 

substructures, that are properly assembled, describes the phenomenon of 

domain decomposition. In the field of wave propagation, FEM was not 

applied until 1972 by Lysmer et al. [79] in seismology. Thereafter, the FE 

formulation started to converge more steadily to the study of wave 

transmission and scattering to and from defects embedded in elastic solids. 

The application of FEM to ultrasonic NDT was first introduced by Ludwig [38] 

and Ludwig and Lord [50, 51], where models were studied for isotropic 

materials in two-dimensional geometries. Further refinement to the latter 

work was accomplished by You [39] and You et al. [80]. In this research, 

complicated geometries, such as axisymmetric and three-dimensional 

situations, and general anisotropic materials were incorporated into the 

development of the elastodynamic finite element code. 

The following two sections examine the physics behind ultrasound 

wave propagation through the derivation of related governing equations and 
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the energy functional of the system under study. 

Governing Equations 

The governing equation of motion which describes the propagation of 

waves in situations where the medium is linear, homogeneous and isotropic 

[51], is 

2 ^ 

(A +  / i )VV.u-p-^+/ iV M =0  (3 .1)  
dt 

where p and u represent the material density and the displacement vector, 

respectively; and A and n are the Lamé constants. Figure 3.1 indicates the 

interior of the domain D in which the above equation is described. In 
addition, the Figure shows the kinematic and the traction boundaries, r% and 

T2, respectively, where Dirichlet- or Neumann-type boundary conditions 

must be specified. A boundary condition that specifies the dependent variable 
u on Fi will be referred to as type I [76] or Dirichlet boundary condition. A 

boundary condition that specifies the normal derivative of the dependent 

variable on r2 will be referred to as a type II [76] or Neumann boundary 

condition. If the entire boundary is of type I, the boundary value problem is 

known as a Dirichlet problem. If the entire boundary is of type II, the 

boundary value problem is known as a Neumann problem. The boundary 

condition of type II is generally a local balance equation [76] which must be 

satisfied at the boundary. The above problem is classified as a hyperbolic 

initial boundary value problem. 

In general, the solution to this boundary value problem is a 

displacement vector u which possesses second partial derivatives throughout 

the domain D, and satisfying the partial differential equation and the 
boundary conditions on fi and r2. Usually, a classical or analytical approach 
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Figure 3.1. Domain and kinematic and traction boundaries 
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to the solution is not possible if the domain D does not hold a particular 

regular shape such as a rectangle or a circle. In this situation, a numerical 

approach, such as, the finite element method, is appropriate. 

The combination of the first and the third terms in Equation (3.1) 

represents a stress tensor, T, in the elastic medium. If Equation (3.1) is written 

in a different form, we get the following 

T jj := P U : (3.2) 
V' '  J 

For the case where small displacement values are considered, as in most NDT 

situations, a linear stress-strain relationship can be established by 

This is referred to as Hooke's law. CijJcl represents the fourth rank material 

tensor while Ski symbolizes the strain-displacement relations and can be 

given by 

(3.4) 

where the commas denote partial differentiation. Substituting Equation (3.4) 

into Equation (3.3) leads to the following expression 

0.5) 

The indices z, ;, k, 1 can take the values 1, 2 or 3 to conform with the x, y and z 

spatial directions convention. It is also assumed that the summation 

convention (S) over the indices will take place throughout. 
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Discretization, Energy Functional and Interpolation 

In order to reach a numerical solution to the problem in question, the 

basic steps of FEM, as were previously described, are to be executed. The very 

first step in developing a finite element model is the discretization of the 

domain of interest. Typical discretization schemes using a set of simple 

straight-sided triangular or rectangular elements, are shown in Figures 3.2 (a) 

and (b). Nodal points situated along the interelement boundaries are also 

indicated in the Figures. Note that, whether triangular or rectangular 

elements are used, there usually exist inherent errors in modeling the curved 

edges of the domain. These errors are expected to be minimized when the 

elements are reduced in size. In general, the mesh should be selected to be 

relatively fine in areas where large gradients or slopes are foreseen. Gradual 

transition from the relatively fine mesh region to the relatively crude mesh 

region should take place. 

The interior of these discretizing elements is described through shape 

functions given in terms of the displacement values at the nodes connecting 

them together. This leads to an energy functional which represents the total 

energy involved in the system [39]. The energy functional can be written as 

the sum of integrals over the areas of the elements in D, and as the sum of 
integrals over the corresponding line segments only on the r2 portion of the 

boundary, since it is assumed that body forces are ignored and that the only 

external force present is the surface traction acting on the traction boundaries. 

Once the stored energies, lost energy and the work done by the different 

external forces are accounted for, an expression for the energy functional can 

be written as 

The first and third terms on the right-hand side of the equation represent the 

(3.6) 
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total potential and kinetic energies, respectively, stored in the solid. 

With a typical discretization as depicted in Figures 3.2 (a) and (b), the 

approximate solution u(x, y, t) can be written in terms of a specially selected 
nodally-based set of interpolation or shape functions ni(x, y). These shape 

functions are used along with the discretization as in 

N  

u(x,y,t) = ̂ ui(t) ni(x, y) (3.7) 
1 

where the summation is carried out over the total number of JV nodes per 

element. 

The selection of the shape functions depends on the type of elements 

used (i.e. triangular, rectangular etc.) in the discretization process. When 

isoparametric elements (i.e. equal numbers of parameters are used to 

represent the geometry and the dependent variables) are used, the same 

interpolation functions or shape functions represent the dependent variable 

within the element as well as the shape or the geometry of the element. The 

most commonly used shape functions are polynomials and collectively 

referred to as the quadratic interpolation functions or, as often termed in 

numerical analysis, the quadratic Lagrange interpolating polynomials [76]. 

These are easily derived from a local elemental coordinate system. 

Once the elemental shape functions are established, the energy 

functional (Equation (3.6)) can be evaluated for each of the elements in the 

discretized domain, and thus, the elemental energy functional can be written 

as 

4  ( « , /  4  =  u  i t  i d s  + f^^u iP u i d  V  (3.8) 
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where r2e represents the portion of the traction boundary where element e is 

located. It is worth mentioning that if the element under study is not 

adjacent to the traction boundary or if that element is located in the middle of 

the domain, then the second term in Equation (3.8), for that specific element, 

vanishes. 

In the following section, the minimization of the elemental energy 

functional is briefly developed. The assemblage process and the structuring of 

the FEM code are also considered. 

Minimization and Assembly 

As just mentioned above, the finite element methodology has 

converted the functional given by Equation (3.6) into the elemental 

functional given by Equation (3.8). The stationary value of this function is 
obta ined  by  requi r ing  the  par t ia l  der iva t ives ,  wi th  respect  to  each  of  the  wf ,  to  

vanish; that is 

—  =  0  i  =  

8ui 

leading to 

/n  SUit ids  +  f  5UipUidv =  0  (3 .9)  
Ug 12e 

Evaluating (3.9) for all elements in the domain and assembling all elemental 

computations, gives rise to a global matrix differential equation 

[K](u)  +  [M]{i i )  =  {F)  (3.10) 
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where [K] and [M] are referred to as the global stiffness and mass matrices, 
respectively; and where their related elemental forms kg and nig are given by 

= I ).} 
ô n r  ô r i j  

.  t j k l  d V 

m  = p n ^ r i j d v  

(3.11) 

where I, J = 1,..., N, where N is again the total number of nodes per element. 

In a similar fashion, {F}, which is a vector containing all loading values at any 
particular time t, can be represented by its respective elemental form, /g, as 

follows 

d s  (3.12) 

Note that the coefficients of both [K] and [M] depend on the interpolating 

shape functions and on both the longitudinal and the shear velocities inside 

the material [38, 50, 51]. Approximating {«}by the explicit central difference 

formula 

"t t + A f ^  ) 
At 

(3.13) 

yields the iterative form 

At 
[K]  - [M]  

At At 
2At (3.14) 
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The above equation constitutes the scheme followed for a direct computer 

code implementation for the vector [u], which contains all the nodal 

displacement values, to be obtained at each time step At. Figure 3.3 shows a 

block diagram depicting the overall program structure of the finite element 

code [38, 39], that is capable of predicting quantitatively accurate displacement 

fields for elastic wave propagation in isotropic as well as composite materials. 

As is seen in the following chapter, results of this program are used as a 

Test Bed to study the sensitivity of the synthetic aperture focusing technique 

(SAFT). The same data set is also used throughout the rest of this research to 

determine, from a simulation point of view, how effective the newly applied 

beamforming approach is at predicting A-scan signals in a nonuniform set of 

measurements. 
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INPUT F.E.M. 

Algorithm 

PREDICTED OUTPUT 

Discretized 
Waveform 

Displacements 
u„and u„  

PARAMETERS 

- Material Properties 
- Boundary Conditions 

(Dirichlet or Neumann) 
- Geometry 
- Mesh Configuration 

Figure 3.3. Overall schematic representing the finite element modeling 
process (Ludwig et. al, 1986) 
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CHAPTER 4. SAFT FORMULATION AND IMPLEMENTATION 

Introduction 

As mentioned in Chapter 2, various ultrasonic imaging techniques 

have been developed to enhance the performance of conventional ultrasonic 

nondestructive testing (NDT). The synthetic aperture focusing technique 

(SAFT) is one of these methods with a primary goal to detect flaws and defects 

within structural and functional components and to identify them in terms 

of shape, size, location and orientation. 

The Concept of SAFT 

SAFT is based on the simple concept of collecting ultrasonic data 

waveforms, known as elements, from a scanning transducer, and then 

processing these elements as a unit, known as an aperture, in a fashion that 

can be described as shifting adjacent elements with respect to the middle 

element of the aperture, summing all elements point by point across their 

lengths and then placing the summing vector at the center of the chosen 

aperture [7]. It is important to note that, in order for the above procedure to 

show good results, as much information as possible has to be gathered about 

the discontinuity. Therefore, it is desirable that the material under test be 

insonified with a very broad beam so that the discontinuity is often seen by 

the transducer as it moves over the surface of the test piece. A focussed 

transducer is used for that purpose [7, 8], where the sound beam converges on 

the material's top surface and then diverges at a very wide angle as it 

propagates through the body of the specimen, as depicted by Figure 2.5. As the 

transducer scans over the material, a series of A-scans are collected. One 

characteristic aspect of these A-scans is that they produce a family of echoes 

forming the locus of a hyperbola having a concave shape that is proportional 

to the depth of the point reflector in the material [7, 46]. The apex of that 

hyperbola occurs when the transducer is located directly above the defect. 

If the center of the aperture (COA) does not coincide with the occurrence of 
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a strong reflector, a weak destructive interference will result from the 

shifting/summing process; otherwise, a strong constructive interference will 

result, as shown in Figure 4.1. 

It is of a crucial importance to note that the procedure just described 

actually takes place at only one specific depth site in the material under test. 

But what if the flaw location is not known (which is usually the case), and 

what if we are dealing with a test piece which contains various defects having 

different shapes and located at different depths? One way to get around this 

problem is to imagine a "focus grid" made of by yp pixels and inserted 

vertically inside the material just below the scanning line (Figure 4.2). 

Each of the pixels represents a particular depth. The distance between 

transducer and pixel (%, , yi) can be calculated by 

where 
A% = Ay = pixel spacing 

As = separation between the transducers 

Knowing the longitudinal stress wave velocity, Vc, in the material, the time-

of-flight, TijJc, can be determined by 

The Formulation of SAFT 

(4.1) 

(4.2) 

where the 2 factor represents the round trip travel of the ultrasound beam to 

and from each pixel in the grid. 
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(al) (a2) 

(a3) 

m (bl) 

(b3) 

Figure 4.1. Shifting and coherent summing of raw A-scans. 
(al) raw A-scans with COA over a reflector 
(a2) time-shifted A-scans 
(a3) correlated A-scans (strong interference) 
(bl) raw A-scans with COA not over a reflector 
(b2) time-shifted A-scans 
(bS) correlated A-scans (weak interference) 
(Seydel, 1982) 
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Figure 4.2. Configuration of the "focus grid" 
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an improvement in digital resolution, by bit dithering, beyond the 8 bits 

obtainable in single-shot mode. The dynamic range of the final data ranged 

from 72.25 to 84.29 dB and was obtained by averaging each time domain point 

into a 16 bit word inside the sampling oscilloscope. These data are then stored 

onto hard disk before the acquisition of another trace begins. The acquisition 

program permits these data to be stored in a variety of formats, ASCII, binary, 

Welch, or Huffman compressed. For the scans, these data are compressed 

using Huffman coding and then stored in binary format. This compression is 

absolutely necessary considering the amount of data which is required for the 

SAFT reconstruction as it is presently done. For the purpose of acquiring a 

basic understanding of the SAFT algorithm, the time domain version has 

been developed. In future work, it is planned to accomplish the time shifts 

required for SAFT by using the Fourier shift theorem; namely, FT-SAFT. 

As implied above, the data are stored off-line for later analysis. This 

analysis is done on a Stellar™ workstation. 

Two test blocks were prepared for the experiment. Since the effect of 

the SAFT algorithm was to be checked and compared on two different kinds 

of materials. Plexiglass™ and Graphite/Epoxy (0°/90° layup) specimens were 

used. The dimensions of both blocks were the same (1x1x4 inches). A set of 

five holes were drilled in each block, having the same size, shape and 

location. An elongated flat-bottom hole, a slot hole, a side-drilled hole and 

two flat-bottom holes with different depths, were machined in both blocks. 

The sizes of the holes (width and depth) varied, as shown in Figure 4.3. 

Description of the SAFT Algorithm 

A block diagram (Figure 4.4) was put together in order to best describe 

the SAFT algorithm. Some SAFT processing parameters are first required. 

These include parameters such as the focal distance of the transducer, the 
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1. Elongated Flat-Bottom 
2. Slot across material 
3. Side-drilled across material 
4. Flat-bottom 
5. Flat-bottom 
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Figure 4.3. Plexiglass''"" and Graphite/Epoxy samples geometry 
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Figure 4.4, SAFT programming block diagram 
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velocity of sound in the coupling medium, the velocity of sound in the test 

specimen, the number of data points (NOP) in a pulse-echo, the number of 

records collected, the incremental distance between the transducer positions, 

the sampling frequency, and the thickness of the test piece. Once these 

parameters are entered, the collected A-scans are read. The SAFT summing 

array is then initialized to zero. The subsequent step is the actual SAFT 

processing loop. Here the different pathlengths traversed by the ultrasound 

signal from each transducer position to every pixel in the focus grid and back, 

are computed. It should be noted that these pathlength values represent the 

phase delays introduced by the transducer/pixel geometry. Each phase delay is 

used to read its respective signal value from each of the collected A-scans. All 

signal values are then summed into the summing vector. If a strong signal is 

present, a constructive image is produced, indicating the presence of a flaw, 

crack, or delamination; otherwise, the summing vector will contain a weak 

destructive interference. 

Analysis of Results 

Different SAFT tests were performed on the collected A-scans, in order 

to provide both qualitative as well as quantitative comparisons between the 

Lucite and the Graphite/Epoxy samples. The resulting SAFT-processed B-scan 

images, for both the Plexiglass™ and the Graphite/Epoxy samples, are shown 

in Figures 4.5 (a) and (b), after a -6 dB threshold has been applied. The darkest 

grey-level in both images represents the zero amplitude. The horizontal 

direction (left to right) corresponds to the transducer movement over the 

surface of the test specimen, while the vertical downward direction 

corresponds to the depth within the sample. 

The results clearly indicate the presence of all five targets, except that 

the elongated flat-bottom hole located at the far left of the images, three 

quarter of the way down from the top surface, is not too obvious. Two reasons 

for this discrepancy can be considered. One, the transducer was not positioned 

exactly over that particular target, during the collection process of the data. 
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(a) 

(b) 

Figure 4.5. Rectified (-6 dB threshold) S AFT B-scan images for 
(a) Plexiglass 
(b) Graphite/Epoxy 
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but rather was positioned in such a way that the beam of insonification did 

not completely cover that flaw, giving rise to a weak reflection. Two, the 

location of that target, due to its depth, was shadowed by the adjacent slot, and 

therefore was not completely illuminated by the beam from the various 

transducer positions along the line scan, resulting in a minimal amount of 

information about that hole. 

One note worth mentioning about the S AFT algorithm, deals with the 

type of computational approximations involved during the SAFT image 

production. As seen from the block diagram in Figure 4.4, two conditions, 

depicted by the questions inside the diamond shaped blocks, were being 

checked for throughout the shifting/summing process. When the time-of-

flight is computed for every transducer position to each pixel in the "focus 

grid", as described earlier, the first condition requires that every pixel that 

does not lie within the cone of insonification (COI) of the propagating beam, 
be excluded from the computation process. Knowing the wave velocity, Vq, in 

the coupling medium, the radius, r, and the focal distance, /, of the 

transducer, a formula can be derived [47] to calculate the width of the COI 

inside the material, as given by the following expression 

where D = depth in the "focus grid" 
and K = vc Ivq 

Once the above condition is satisfied, the second condition further 

checks to see if the computed pathlength, corresponding to that particular 

pixel lying within the COI, is less than the number of points (2048 in this case) 

collected on a per A-scan basis. 

Tables 4.1 (a) and (b) show a comparison between the actual measured 

targets (depth location and width size) and measurements computed from the 

cone width = 2D .tan< sin K  . sid tan (4.4) 
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Table 4.1. Comparison between actual and experimental depth and width 
dimensions, (a) Plexiglass"''" (b) Graphite/Epoxy 

(a) Depth Dimension Width Dimension 

Raw Type Actual Post SAFT Actual Post SAFT 

Elongated F.B. 0.75" 0.76" 0.5" 0.48" 

Slot 0.5" 0.52" 0.125" 0.125" 

Side-Drilled 0.6" 0.61" 0.125" 0.11" 

F. B. #1 0.67" 0.66" 0.125" 0.125" 

F.B. #2 0.5" 0.52" 0.125" 0.125" 

(b) Depth Dimension Width Dimension 

Flaw Type Actual Post SAFT Actual Post SAFT 

Elongated F.B. 0.75" 0.767' 0.5" 0.56" 

Slot 0.5" 0.52" 0.125" 0.14" 

Side-Drilled 0.6" 0.603" 0.125" 0.09" 

F.B.#1 0.67" 0.644" 0.125" 0.14" 

F.B. #2 0.5" 0.493" 0.125" 0.14" 
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S AFT images. Table 4.1 (a) gives the results for the Lucite piece and Table 4.1 

(b) gives data for the composite sample. These data were obtained using a 

ruler and estimating the size of the flaws relative to the size of the image. 

This method of sizing the defects is not very accurate but was the only 

available means at the time of the experiment. Both tables indicate that SAFT 

did prove to be an adequate tool at providing enough information about the 

targets. However, due to its constraint, as far as the nature of the sample 

under test is concerned; that is, the material must be homogeneous and 

isotropic, SAFT was not quite successful in reconstructing defects in the 

composite block. As is discussed in the following section, one way to improve 

the quality of the conventional SAFT when applied to composites, is to 

consider the different velocities of the ultrasonic wave in the various 

directions of propagation, instead of assuming the same velocity in all 

directions. 

Anisotropy Effects 

The performance of conventional reconstruction methods (i.e., SAFT), 

used in ultrasonic NDT, has been quite impressive as far as the detection and 

sizing of flaws and defects in various materials is concerned. However, as 

previously stated, assumptions were made about the type of material used in 

the restoration process. The two major assumptions dealt with representing 

the medium as isotropic and homogeneous. These suppositions are less likely 

to hold true when composite materials are tested. This section describes a 

scheme that can be used in this situation, as a modified version of the 

formally presented SAFT algorithm. 

As already discussed, the manner in which SAFT can be applied to 

composites is not as trivial as the isotropic/homogeneous case of 

reconstruction. Although a preliminary application of the conventional 

SAFT algorithm [47] appeared to have given acceptable results, more work 

had to be devoted in order to improve the quality of the SAFT-processed 

images, for a complete defect diagnosis and a thorough understanding of 
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materials with a higher degree of complex anisotropy. 

Consider the situation where an infinitely long fibrous composite 

specimen (Figure 4.6) is immersed in water and subjected to a longitudinal 

plane wave, originating from a focused transducer, and propagating at 

normal angle of incidence. The wave interaction with the material results in 

displacement fields which can be described by stress-strain relations [49]. The 
non-constant nature of the phase velocities, vp, in the direction of 

propagation of the corresponding plane-wave vectors for anisotropic media, 

results in three non-spherical slowness curves (Figure 4.7). The outer and the 

middle curves represent the two shear waves and the innermost one 

corresponds to the longitudinal wave. If we now consider looking at the latter 

slowness surface (Figure 4.8), one can determine the various group velocities, 
Vg, which correspond to the various phase velocities in the different 

directions of propagation (0i) as shown in Figure 4.6. These represent the 

family of stress-wave velocities in those directions, needed when SAFT is 

applied. Group velocities can be determined by projecting their vectors, on 

the surface of the slowness curve, normal to the corresponding phase 

velocities vectors. Using some simple trigonometry, the group velocities can 

then computed by the following 

i; p = u ̂ . cos (p J (^-5) 

where (pi is the angle formed between the group velocity and the phase 

velocity vectors. From this equation, a look-up table can be constructed for all 

possible angles in the field of view of the transducer. The calculated group 

velocities could then be used along with Equations (4.1 - 4.3) to reconstruct the 

plane in which the focusing takes place. 

Note that this method is only a proposal and has not been applied yet 

to either a simulation nor a laboratory experiment, but will be further studied 

in future work. 
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Fiber 
Direction 

Figure 4.6. Example of a fibrous composite material under test 
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TTTJ-

slowness (xD 

Figure 4.7. Example of slowness curves when the fiber 
direction is at 60 degrees from the xi axis 
(Chedid-Helou, 1991) 
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0 = 0° 

X component of slowness (jisec/cm) 

Figure 4.8. Slowness surface for a longitudinal wave 
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Finite Element Simulation 

A particularly important aspect in ultrasonic NDT research is the 

detailed understanding of the ultrasonic energy interaction with the material 

under test. Since the finite element method (FEM) can be used, as seen in the 

previous chapter, to solve the hyperbolic partial differential equations [38, 39, 

50, 51], which govern ultrasonic wave propagation, FEM solutions can be used 

to mimic a SAFT measurement. 

The goal of this section is to use FEM in order to simulate the action of 

a transducer array, and then use the resulting signals, along with SAFT, to 

reconstruct the reflectors under study. 

To repeat, in brief, what was said earlier, the finite element method is 

based on two fundamental principles: (1) the weak formulation of a boundary 

value problem; and (2) the domain decomposition into subdomains or 

elements [39]. Equations (3.1 - 3.8) constitute the scheme followed for the 

direct computer code implementation for the computation of the 

displacement vectors, and hence, the simulated A-scans at each transducer 

time step. 

For the purpose of describing the overall picture, the sample to be 

modeled is presumed to be of an isotropic nature (i.e.. Plexiglass™) and of 

infinite extent. Practical considerations dictated a block geometry of 1x1x2 

inches. A set of two slots (0.5 inch apart) are located just beneath the line scan. 

The width of the slots is the same (0.125 inch); however, their depth from the 

surface of the sample varied (0.5 inch and 0.75 inch). Figure 4.9 shows the 

geometry of the sample. The sample is considered to be placed in a water tank. 

The transducer is simulated as being 1 inch in diameter, having a center 

frequency of 2 MHz, and producing a very broad spectrum. A transducer 

separation of one half a wavelength (X/2) is used to meet the criterion 

required by SAFT. A line scan of 1 inch would then require 38 time domain 

A-scan traces to be produced. In order to achieve this requirement, the finite 
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Figure 4.9. Sample geometry used in the finite element simulation 
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element program is set with the following parameters: 

Longitudinal wave velocity 
Shear wave velocity 
Density (Plexiglass''"") 
Number of elements 
Number of nodes 
Number of unknowns (Displ.) 
Number of points/A-scan 

= 2740 m/s 
= 1360 m/s 
= 1188Kg/m3 
=178802 
=179700 
= 359400 
= 700 

As expected, the program provided a set of data representing the 

displacements in the longitudinal and lateral directions at each of the 179,700 

nodes. Figure 4.10 depicts some of the resulting longitudinal A-scans, after the 

front and back walls have been removed. Theoretically, only these 

longitudinal displacements are needed for thé SAFT algorithm, since the 

lateral displacements do not carry much information to enhance the 

resolution of the medium under study. Nevertheless, once the data was 

acquired, it was found out that there might be enough information in the raw 

lateral displacements, for the SAFT to be not only capable of reconstructing 

the image from the longitudinal displacements, but also from the lateral 

displacements too. 

Figures 4.11 (a) and 4.12 (a) show the resulting raw images produced by 

the FE code. Figure 4.11 (a) is the result of the longitudinal displacements, 

while Figure 4.12 (a) is obtained from the lateral displacements. 

The final step of this study is to run the FE data through the SAFT 

algorithm in order to further focus on the flaws and to be able to classify them 

in terms of shape, size, orientation and location. 

Since the scanning process of the sample took place in one direction 

and not in a 2-D fashion (i.e., raster scan), then 2-D reconstruction (B-scan) 

instead of 3-D (C-scan) is expected to result from the SAFT processing. This 

fact, then, provides us with a flaw characterization in terms of size, orienta-
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m# 

Figure 4.11. Finite element longitudinal displacements 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 4.12. Finite element lateral displacements 
(a) Raw B-scan image 
(b) SAFT B-scan image 
(c) Magnitude of SAFT 
W) Rectified (-6 dB threshold) SAFT image 
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tion and location only. 

Once the data set was collected, different S AFT tests were performed on 

the A-scans in order to, once again, portray both qualitative as well as 

quantitative assessments of the actual and of the restored samples. The 

resulting B-scan images are shown in Figures 4.11 (b) and 4.12 (b), for the 

longitudinal and the lateral cases; respectively. Again the darkest grey-level 

represents the zero amplitude. The horizontal direction (left to right) 

corresponds to the transducer movement over the surface of the test 

specimen, while the vertical downward direction corresponds to the depth in 

within the sample. 

The results shown, clearly indicate the existence of both slots and that 

the SAFT process has increased the resolution of these slots. Figures 4.11 (c) 

and 4.12 (c) show the same images as in Figures 4,11 (b) and 4.12 (b), after the 

magnitude of the images has been calculated to produce rectified versions 

without loss of resolution. 

In order for the performance of SAFT to be evaluated, as far as sizing of 

the flaws is concerned, a 6 dB threshold has been applied to Figures 4.11 (c), 

and 4.12 (c). The resulting images are shown in Figures 4.11 (d) and 4.12 (d). 

Again, the superiority of the SAFT technique is indicated. Table 4.2 shows a 

comparison of the actual measured targets (depth and width) and those 

estimated from the FE SAFT images. Note that this particular sizing is based 

on the rectified longitudinal images and not on the rectified lateral images, 

although the latter would give a similar measurement determination. 

The application of SAFT, using the finite element modeling technique, 

has been described. Results indicate the validity of the FEM model as a Test 

Bed for SAFT sensitivity studies and point out the possible use of lateral 

displacement data for SAFT reconstruction. 
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Table 4.2. Comparison between actual and FEM S AFT dimensions in both 
the longitudinal and the lateral directions 

Depth Dimension Width Dimension 

Actual FEM SAFT Actual FEM S AFT 
(-6dB) 

SLOT#l 0.75" 0.76" 0.125" 0.125" 

SLOT #2 0.50" 0.51" 0.125" 0.125" 



www.manaraa.com

69 

CHAPTER 5. BEAMFORMING; A DECONVOLUTION ALGORITHM 

The general definition of the term Beamforming refers to the reception 

of energy propagating in a particular direction while rejecting energy 

propagating in other directions [16, 17]. Signals within the beam are 

transmitted with minimum distortion, and those lying outside the beam are 

isolated and attenuated. This form of signal processing is adaptive in the 

sense that it employs a certain weight adjustment algorithm to minimize the 

output variance in the desired look direction. Some of its practical 

applications include [83] radar, sonar, geophysical exploration, astronomy and 

astrophysics, and biomedical image and signal processing. From an ultrasonic 

NDT viewpoint, beamforming can be interpreted as spatial filtering which 

operates on the outputs of an array of transducers in order to enhance the 

amplitude of a coherent wavefront, emanating from a certain direction, and 

propagating in a medium such as Plexiglass'^" or Graphite/Epoxy. In fact, 

these transducers provide a means of sampling the received echoes in space 

[83], and the collected outputs, at any specific instant of time, can be 

interpreted as a snapshot of the medium under test. Therefore, in the case of a 

line-scan, this data snapshot is similar to a set of tap inputs present in the 

design of a finite-impulse-response (FIR) filter [16, 83] at a particular instant of 

time. 

The following section describes the concept of beamforming and 

introduces some of the terminology that is pertinent to this research work. 

Description of General Beamforming 

Conventional time-domain beamforming, in its simplest form, such as 

S AFT, is accomplished by appropriately delaying and adding the outputs of an 

array of transducers, as indicated in Figure 5.1. In general, the delays are 

correlated with the anticipated propagation delays of every individual 

pressure field incident from a specific direction. The discrete implementation 

of this beamformer requires the sampling of the time-domain signals at a rate 
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Delay xM 

Figure 5.1, Delay-and-sum beamformer structure (SAFT) 
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consistent with the Nyquist criterion in order for the reconstruction process 

to be successful. This is discussed shortly in this section. The family of signals 

are then time delayed and summed in the beamforming operation. Note that 

prior to this operation, the outputs of the transducer are weighted so as to 

improve the beam's spatial response. These weights are sometimes assumed 

to be unity for simplicity, as is the case in Figure 5.1. This type of 

beamforming systems is called the delay-and-sum beamformer [17, 83]. As an 

example, in NDT, if a sample containing a defect is scanned, the average 

power at the output of this beamformer (SAFT) is maximized when the 

center of the aperture lies directly above the target (i.e., the defect is 

completely covered by the steering beam). As seen in Chapter 4, one of the 

major drawbacks of the SAFT beamformer, however, is that its performance 

weakens in the case when interfering signals are present, such as those signals 

resulting from the effect of anisotropy. 

Due to the fact that the delay-and-sum beamformer response is highly 

dependent not only on the power of the incoming wavefront, but also on the 

interference contributions from undesirable sources, a different technique 

used for solving beamforming problems, adaptively, was proposed in 1969 by 

Capon [84]. The design of this newly developed beamformer is based on two 

major requirements that the beamformer has to satisfy. These two 

requirements are (1) the target being scanned is always covered by the steering 

beam, and (2) the effects of noise and interfering signals, from other sources 

in the field of view, are to be minimized. 

In order for these requirements to be met, a (Mxl) weight vector W is 

chosen to minimize the variance (i,e., average power) of the beamformer 

output. In its turn, the chosen weight vector has to satisfy the condition 

w"s(0) = l (5.1) 

where S(^) is a (Mxl) steering vector. The superscript H represents Hermitian 
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(i.e., complex conjugate transpose). The above condition (5.1) ensures that, 

for any look direction, the target signal is always covered by the beam, by 

maintaining a constant array response, regardless of the assigned values for 

the weight vector coefficients. The steering vector S(^) can be expressed in 

terms of its elements as 

S{<p) = - j^  -j(M-l)(;> 
H 

(5.2) 

The angle (p can be determined by the direction of the target via the following 

relationship 

^  =  2 K — s i n d  (5.3) 
A 

where d is the spacing between adjacent transducer positions, A is the 

wavelength, and 6 is the incidence angle of a plane wave, measured relative 

to the normal of the linear array. In other words, as an ultrasonic plane wave 

reflects from a discontinuity or a defect within a material and propagates 

toward a linear array of transducers, a spatial delay of {d sind) exists between 

the received echo signals at any pair of neighboring transducers [83]. This 

spatial delay can be converted to an electrical angular shift as described by the 

above expression (5.3). Figure 5.2 describes the above plane-wave-array 

g e o m e t r y .  T h e  i n c i d e n c e  a n g l e  d  c a n  o n l y  b e  c o n t a i n e d  w i t h i n  t h e  [ - 7 c / 2  ,  n / 2 ]  

range. Therefore, according to Equation (5.3), 0 can be permitted to vary only 

within the [-jc, it] range. This fact, then, restricts the spacing, d, between the 

transducer positions to be less than half of the wavelength value (i.e., A/2), in 

order for a proportional correspondence between ^ and 6, to exist [83]. This 

condition constitutes the basis of the sampling theorem, namely, the Nyquist 

criterion. The constrained variance minimization just described can be 

implemented using an algorithm referred to as the minimum-variance 

distortionless response (MVDR) [84, 85]. A basic MVDR adaptive beamformer 
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Figure 5.2. The geometry of a plane wave incident on a linear array 
and its effect on the spatial delay incurrence 
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Figure 5.3. Basic MVDR adaptive beamformer (Haykin, 1991) 
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is shown in Figure 5.3 [27,83]. 

Note that MVDR beamforming is considered to be a special case of 

what is referred to as the linearly constrained minimum variance (LCMV) 

beamforming system [16, 83]. The basic idea behind LCMV is to minimize the 

beamformer output variance or power subject to the response constraint 

w"s(#  = g  (5 .4)  

where g is a complex constant. By linearly constraining the weights to satisfy 

(5.4), the LCMV beamformer insures that any incoming signal from an angle 

6 (or <f>) is passed to the output with response g. If g=l, then (5.4) is termed the 

response constraint of the MVDR beamformer, as given by Equation (5.1). 

Data Independent Beamformer 

One major contribution to adaptive arrays was made in 1967 [27]. Here, 

the variable weights were automatically calibrated (adjusted) by a simple 

adaptive technique based on the least-mean squares (LMS) algorithm. From a 

minimum-mean-square error (MMSE) sense, the resulting array adapts itself 

to form a main beam in one direction while rejecting noise signals occuring 

outside that main beam. 

Another algorithm that deals with weight adjustments in adaptive 

anterma systems, was put forth in 1976 [28]. In a classic report, the governing 

control system that covers the operation of adaptive antenna arrays, was 

derived. The proposed algorithm was based on the maximization of the 

signal-to-noise ratio (SNR) at the output of the antenna array, in the presence 

of noise. 

Both, the LMS (MMSE) algorithm [27] and the maximum SNR 

algorithm [28], are rather similar. They adaptively adjust the weights in the 
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antenna array by correlating antenna signals. The examples shown using both 

algorithms, illustrate the convergence of the LMS and the SNR adaptation 

procedures toward the optimum Wiener solution. 

In a data independent (DI) beamformer [16], the weights are designed in 

a similar, but not exactly the same, fashion to the SNR and the LMS 

algorithms, so that the beamformer response approximates a desired 

response, from an arbitrary direction, independent of the array data statistics. 

This method constitutes the main theme of the present research topic. 

The choice of the weights is such that the actual response 

R(^)) = w"s(0) (5.5) 

approximates a desired response Rd((6). The selection of these weights can be 

based on a number of techniques similar to those used in FIR filter design. 

The only difference in this analogy, is that the weights here are chosen to 
minimize the Lp norm [16] of the difference between the desired and the 

actual response. One of the most commonly used norms is the L2 (least-

squares). 

The method of least-squares (LS) is used to solve a linear filtering 

problem, without invoking any assumptions on the statistics of the inputs 

applied to the beamformer (i.e., filter). LS may be viewed as an alternative to 

the Wiener filter theory. However, Wiener filtering is sometimes referred to 

as least-squares filtering [86]. This is somewhat of an oversimplification since 

the Wiener filter is based on ensemble averages where the resulting 

optimum filter, in a probabilistic sense, is obtained for all realizations of the 

operational medium, hence minimizing the average squared-error and not 

just the squared-error, as in least-squares filtering. There exists, however, 

some sort of a coincidental connection between Wiener filtering and 

deterministic least-squares. The following section demonstrates the link betw­
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een the two methods through the description of the LS method in its basic 

form. 

Least-Squares Estimation 

In order to describe the liaison between the Wiener filter and the LS 

filter, assume that an (NxN) matrix quantity [F] is to be determined from an 

(MxN) matrix, [Y], of linearly related known measurements 

[X].[F] = [Y] (5.6) 

where [X] and [Y] are complex and assumed to be given. [X] is a matrix with 

dimensions (MxN). Both [X] and [Y] are analogous to S(0) and R(^), 

respectively. It is also assumed that M > N, and that [F] is overdetermined by 

the system of equations represented by (5.6). The estimate of [F] is defined as 

the "best" or the "optimum", [Foptl/ solution that minimizes the sum of the 

squared residuals. That is, if [Y] is moved to the left of (5.6) and [F] is 

substituted by [Foptl/ the residual error matrix, [e], can be obtained by 

[X].[Fopt]-m = [e] (5.7) 

[Foptl can then be estimated by minimizing the performance measure, which 

is the sum of squares of errors 

ai = [e]"[el (5.8) 

The solution is found by expressing [e] in terms of [Foptl then setting the 

derivatives of [J1, with respect to each component of [F], to zero, as follows 

ai = [e]" [el = [ [XI. [Foptl - [Y11" [ [X]. [Foptl - [Y] ] (5.9) 
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This expression may be expanded and differentiated term-by-term and then 

set equal to zero. If the brackets [ ] are dropped, for simplicity, this will lead to 

the following 

= x) y" X y + y" y1 g p ^ opt\^ opt ^ opt 

= 2(x"x)Fopt-(Y"x) -x"Y = 0 (5.10) 

which can be rewritten as 

(X"X)F„P, =X"Y (511) 

Equation (5.11) may now be solved for Fopt- The result is 

F „p, = ( x " x )  X " Y  ( S . 1 2 )  

This is the solution of the deterministic least-squares problem and is often 

called the minimum error-norm solution. Equation (5.12) shows that the 

least-squares estimate Fopt is linearly related to the measurements Y. This is 

not surprising since derivatives of quadratic functions are linear functions. 

A more generalized form [86] of the least-squares (Wiener) problem can 

be stated as follows. It is required to minimize 

D] = [e]"[VV][e] (5.13) 

where [W] is a symmetric and positive definite weighting matrix. If it is 

desired to have equal weightings of the residuals, [W] will simply be set to 

the identity matrix [I]. However, in this case, a weighting matrix is used 

because, in some situations, more confidence is acquired in the accuracy of 
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some measurements than of others; hence, the elements of [W] are chosen 

accordingly to weigh these measurements more heavily than others. As a 

result, the solution to the least-squares estimate (Wiener filter) is modified to 

(again after dropping the brackets [ ]) 

F o p t = ( x " w x )  x " w Y  ( 5 . 1 4 )  

which is the solution of the general problem. 

In a slightly different approach [86] for determining the solution for the 

optimal filter, let [Rxxl represent the time-averaged autocorrelation matrix of 

the tap inputs, and let [Rxy] represent the time-averaged cross-correlation 

matrix between the tap inputs and the desired response. Using the above 

auto- and cross- correlation matrices representation, and assuming that [Rxxl 

is nonsingular (i.e., the inverse matrix [Rxx] ^ exists), then the solution for the 

optimal filter can be written as 

[Foptl — [Rxxl [Rxy] (5.15) 

Singular-Value Decomposition 

In the previous section, the system of normal equations for computing 

the linear least-squares solution, was developed. The formulations presented 

for this solution were given by Equations (5.12) and (5.15) directly in terms of 

data matrices. To recapitulate, [X] is the data matrix representing the signals as 

the input vectors and [Y] is the data matrix representing the signals of the 

desired response. The two forms (5.12) and (5.15) are mathematically 

equivalent. However, their computational procedures for evaluating [Fopt], 

are different. Equation (5.15) involves the computation of the product X^X to 

determine the autocorrelation matrix [Rxx] , while Equation (5.12) requires 

that the entire term (X^ X)"^ X^ be evaluated by means of the singular-value 
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decomposition (SVD) to be applied directly to the input data matrix [X]. If a 

new matrix is defined 

x^=(x"x)'^x^ (5.16) 

then (5.12) may be rewritten as 

Fopt = X+.Y (5.17) 

The main interest in the SVD method, here, is to then formulate a general 

definition for the pseudoinverse X^. Given the (MxN) data matrix X, there 

exist two unitary matrices V and U, such that 

U ^ X V  =  
Z 0 

0 0 
(5.18) 

where S is a diagonal matrix 

S = diag ( ci, C2 Cr ) (5.19) 

and where the subscript r denotes the rank of the matrix X. The rank is 

defined as the number of linearly independent columns in the matrix X. the 

o's represent the singular values of the matrix x\ and are ordered as 

a | ^ O 2 ^ . . . ^ a p > 0  

Note that V is an (NxN) unitary matrix whose columns are made up of a set 
H 

of orthonormal eigenvectors of X X that are associated with the eigenvalues 
2 

C j 's. Equation (5.18) establishes the theorem of the singular value 

decomposition for overdetermined systems. 

In practice, it is often seen that the data matrix X contains linearly dependent 
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columns [83]. Consequently, there exists an infinite number of solutions to 

the least-squares problem. Therefore, deciding which of these solutions is to 

be adopted as the ultimate choice, is cumbersome. However, if the SVD 

technique is used, this issue can indeed be resolved, even when the 

null(X)=0. The pseudoinverse X"*" is defined as [83,87,88] 

-1 

Ù 0 

0 0 
(5.20) 

where 

- 1  . 1 - 1  - 1  - 1  
£ = diag IO|, (?2 ;. ., OiJ. 

If the matrix V is partitioned as 

V = ( V „ V 2 )  

where V is an (NxK) matrix, and V is an (Nx(N-K)) matrix, where K=r (the 
1 2 

rank of X), with 

v f  V 2 = 0  

it can be shown, without proof, that 

H H 2 
V " X  X V i = Z  

-1 H H 
= > E  V " X  X V ] Z  = I  (5.21) 

Now if a new (MxK) matrix 
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U |  =  X V | S ^  ( 5 . 2 2 )  

is defined, then from (5.21) and (5.22) it is noted that 

(x"x) =ViZ'Vf 

and 

H T4 
X  = V i E U "  

where 

-2 I -2 -2 -2\ 
Z = diag j, Gg,..., Gy j 

In the next chapter, all of the above theory is put to the test. The 

implementation of the data independent beamformer is described by a block 

diagram. In addition, the defect prediction and the reconstruction procedures 

using finite element simulated data are also presented. Furthermore, the 

effects of transducer baseline nonuniformity as well as the material geometry, 

on the performance of the beamformer, are discussed via a few examples. 
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CHAPTER 6. RESULTS OF DEFECT PREDICTION 

The concepts of two adaptive systems with the task to minimize the 

output variance or power under the linear constrained response to specified 

directions were introduced in Chapter 5. In addition, a brief theoretical 

analysis on the data independent beamformer based on the method of least-

squares (LS) was also derived. 

In this chapter, the algorithm for the data independent beamformer 

system is presented. It is seen that this technique is capable of adjusting the 

weights of the interpolating filter (beamformer), in function of the array of 

transducers, to predict an incoming signal from a desired direction while 

discriminating against other signals from different directions. The transducer 

array input data are simulated using the finite element method, as shown in 

Chapters 4 and 5. Computer implementation confirms that the filter is indeed 

able to not only predict defect locations from a set of data produced by a 

nonuniformly spaced transducer baseline, based on one material geometry, 

but also predict defect locations, to a lesser extent, from a data set produced by 

a nonuniformly spaced transducer baseline based on a different material 

geometry. This geometry is taken to be the reverse of the training actual 

geometry. On the other hand, further to the tests performed to determine the 

optimal filters with the actual geometry, playing the role of the training data, 

similar filter studies were conducted assuming the reversed geometry as the 

basis for the training data, in order to ascertain the robustness of the proposed 

method. Results due to the effects of transducer spacing nonuniformity and 

of material geometry are shown. Furthermore, in order to assess the 

performance of this beamforming method, plots of the relative mean-squared 

error (RMSE) between the resulting B-scan images and the desired response 

are also presented. 

This problem is classified as a minimum least-squares (MLS) problem 

where no a priori knowledge of the statistics of the input signals is assumed. 
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Filter Implementation and Procedure 

As seen in Chapter 5, the standard formulation for the discrete, multi­

channel data independent beamformer leads to a system of normal linear 

equations. The solution to these equations gives the optimal filter that 

minimizes the mean-squared error (MSB) between the reconstructed signal 

and the true desired signal. The intent of this section is to outline the basic 

steps which are utilized as a means to determine the optimal filter and to 

confirm the numerical predictions produced by the filter. These numerical 

predictions are directly compared to the training finite element model for 

both the actual and the reversed geometries. 

The simulation test system consists of the following items: 

1. Start out with the set of finite element simulated time-domain 

ultrasonic signals, as shown in Chapter 4, serving as the training data. 

Here, 38 signals are obtained with the finite element test bed. 

2. Take the Fourier transform of these time-domain signals. 

3. Read in the same ultrasonic signals but in reversed order with respect 

to the signals read in step 1; and again take the Fourier transform of 

these signals. 

4. Initialize two temporary arrays X and Xi to zero. These arrays represent 

the actual (or reversed) and the reversed (or actual) inputs to the 

beamformer, respectively. 

5. Determine the percentage number of records to be kept as the input to 

the beamformer, with the rest of the records assumed to be missing and 

need to be reconstructed. Five choices are available: 

(a) 50% (keep the odd records) 
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14. Finally, compare the resulting output time-domain images with their 

corresponding desired images in steps 1 and 3, by computing the 

relative mean-squared error (RMSE) according to 

where yr is the reconstructed output and yt is the true desired output; and 

where nr and np are the number of records and number of points per record, 

respectively. The computer code for the above procedure is given in 

Appendix B. 

In practice, we never have the desired signal distribution. As a 

consequence, a direct method to determine the optimal filter cannot be 

obtained from only the nonuniformly spaced signals. So then, the goal of this 

approach is to calculate a number of filters, Fopt, for a variety of nonuniform 

transducer baselines and use these results inversely as a look-up table. That is, 

g i v e n  a  s e t  o f  n o n u n i f o r m l y  s p a c e d  u l t r a s o n i c  s i g n a t u r e s  f r o m  a n  

experimental inspection of a material with known geometry and known type 

(i.e.. Plexiglass"''", Steel, Aluminum etc.), one could find a similar material in 

the look-up table, and then reconstruct the irregular test image using the 

corresponding optimal filter found in the table. 

Two sets of tests were performed using the finite element code to 

provide the training data for both the actual and the reversed geometries. The 

simulated material is considered to be isotropic and having the same 

characteristics as Plexiglass'''". The material geometry and the location of the 

flaws are shown in Figure 4.9. The resulting B-scan records are shown in 

Figure 4.11, and depicted again in Figure 6.1, for convenience. Let this image 

be of the actual geometry and let Figure 6.2 be of the reversed geometry. 

RMSE (%) = 100 2 
i = l j  =  l  y t ( i , j )  

Prediction and Reconstruction: Tests and Results 
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Figure 6.1. Finite element actual geometry 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of SAFT 
(d) Rectified (-6 dB threshold) SAFT image 
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(a) (b) 

(c) (d) 

Figure 6.2. Finite element reversed geometry 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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The first set of tests are conducted on the actual geometry with Figure 

6.1 being our desired image. That is, the filter is computed based on 

nonuniform signals taken from the actual geometry. Once the filter weights 

are determined, they are then convolved with both the irregular actual image 

and with the irregular reversed image (having same number of missing 

records). Again, the total number of records in both the actual and the 

reversed geometries is 38; from which 50% (odd or even), 26%, 13%, or 3% are 

kept so to make the transducer baseline equally spaced (in the case of the 50% 

arrangements) or unequally spaced (in the case of the 26%, 13%, or 3%). 

The tests in the second set are basically the same as the tests achieved in 

the first set, except that now the filters are the result of using the reversed 

geometry as the training data, and applying these filters on the nonuniform 

signals of the actual geometry. 

Following each prediction process in either set of tests, SAFT is used to 

determine the size and location of the two flaws in the resulting B-scan 

images, similar to the way it was applied in Chapter 4. 

The total CPU time required for each of the test runs (Beamforming + 

SAFT) is approximately 4 minutes and 24 seconds on the Stellar™ computer 

system. 

As a first attempt to check for the effectiveness of the DI beamformer 

from an optimal point of view, using the software (Appendices A - C) 

developed for that purpose, the first case of keeping the odd 50% of the 

ultrasonic signals in the actual geometry, is tested for. Figure 6.3 shows the 

magnitude of the frequency response filter produced as a result of this 

preliminary trial. The darkest grey level in the image corresponds to the zero 

amplitude. All (38 x 38) filter images were padded with zeros (on the right and 

on the bottom), throughout this work, to produce (64 x 64) portrayals of these 

images so that their inverse FFT can be determined. One particularly 

intriguing pattern detected in the data comprised within these filter images, is 
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Figure 6.3. Magnitude of frequency domain filter based on 
50% (Odd) of the FEM actual geometry 
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that the only columns containing any significant values, are those which 

correspond to the signals that were kept in the input data array X, with the 

largest value in each column lying on, or close to, the diagonal of the filter 

matrix. For example, in Figure 6.3, the only columns that contain any 

meaningful data are the odd columns (1, 3, 5,... , 37), which constitute 50% of 

the record. Similar patterns are also noticeable in the subsequent filter images, 

for the rest of the cases to be studied. The other interesting feature in these 

filter images, is that they reflect the order of the filter. As described in Chapter 

5, the way the optimal filters are solved for, is by differentiating the second-

order error expression given by Equation (5.9). This operation leads to the 

first-order relationship (Equation (5.12)) for the filters. Therefore, the optimal 

filters obtained are linear filters. This can actually be confirmed by taking a 

vertical slice along any of the significant columns of any of the filter images, 

and noting that the profile is analogous to that of a single-pole finite-impulse 

response (FIR) filter. The next step is to convolve the complex filter, whose 

magnitude is shown in Figure 6.3, with the nonuniform arrays X and Xi, for 

both the actual and the reversed geometries. Figures 6.4 and 6.5 illustrate the 

outcome of the convolution. Figures 6.4 (a) and 6.5 (a) show the reconstructed 

raw actual and reversed images, while Figures 6.4 (b) - (d) and 6.5 (b) - (d) 

exhibit the SAFT B-scan images and their corresponding rectified version 

after a -6 dB threshold has been applied in order to determine the lateral size 

of the flaws as well as their respective location. Quantitative evaluation of 

these and following images will be analyzed in the next section. In the very 

same manner, the other filters are computed based on keeping the 50% 

(even), 26%, 13% and 3% of the ultrasonic record of the actual geometry, and 

once again convolved with the individual arrays X and Xi. Figures 6.6, 6.9, 

6.12 and 6.15 display the magnitude of the filter response for each of the cases; 

and Figures 6.7, 6.8, 6.10, 6.11, 6.13, 6.14, 6.16 and 6.17 all demonstrate the 

individual reconstructed actual and reversed records and their respective 

SAFT B-scan versions, in the same orderly fashion presented for the first case. 

Next, the filter is trained on the reversed geometry data and then 

applied to the nonuniform actual data. This is done to verify the performance 
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Hf 

Figure 6.4. Reconstructed FEM actual geometry using filter in Fig. 6.3 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of SAFT 
(d) Rectified (-6 dB threshold) SAFT image 
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(a) (b) 

(c) (d) 

Figure 6.5. Reconstructed FEM reversed geometry using filter in Fig. 6.3 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.6. Magnitude of frequency domain filter based on 
50% (Even) of the FEM actual geometry 
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(a) (b) 

(c) (d) 

Figure 6.7. Reconstructed FEM actual geometry using filter in Fig. 6.6 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of SAFT 
(d) Rectified (-6 dB threshold) SAFT image 
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(a) (b) 

(c) (d) 

Figure 6.8. Reconstructed FEM reversed geometry using filter in Fig. 6.6 
(a) Raw B-scan image 
(b) SAFT B-scan image 
(c) Magnitude of SAFT 
(d) Rectified (-6 dB threshold) SAFT image 
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Figure 6.9. Magnitude of frequency domain filter based on 
26% (1,5,10,15,20,25,28,30,35,38) of the FEM 
actual geometry 
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Figure 6.10. Reconstructed FEM actual geometry using filter in Fig. 6.9 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.11. Reconstructed FEM reversed geometry using filter in Fig. 6.9 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.12. Magnitude of frequency domain filter based on 
13% (1,11,21,31,38) of the FEM actual geometry 
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(a) (b) 

(c) (d) 

Figure 6.13. Reconstructed FEM actual geometry using filter in Fig. 6.12 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.15. Magnitude of frequency domain filter based on 
3% (1) of the FEM actual geometry 
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(a) (b) 

(c) (d) 

Figure 6.16. Reconstructed FEM actual geometry using filter in Fig. 6.15 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.17. Reconstructed FEM reversed geometry using filter in Fig. 6.15 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of SAFT 
(d) Rectified (-6 dB threshold) SAFT image 
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of the beamformer when operating on a modified version of the ultrasonic 

data. Again, the same type of tests were directed as far as the percentage of 

missing signals is concerned, and once more the filters proved indeed to be 

robust enough at providing satisfactory reconstruction of the missing signals 

in the various look directions. Figures 6.18 - 6.29 illustrate the different filter 

images with their corresponding medium reconstruction in both the reversed 

and the actual geometries. The last case of keeping 3% (1 record) of the record 

is not reported since the results resemble the ones shown in Figures 6.15 -

6.17. 

Discussion of Results 

A number of points have to be discussed in order to evaluate the 

performance of the DI beamformer just applied as a restoration technique in 

the presence of missing ultrasonic pulse-echo signals from a typical 

nondestructive test, as shown in the previous section. 

First, two comments need to be made in relation to the images in both 

sets of tests where 26% and 13% keep situations are considered. These 

comments can be stated in form of questions. How are the 10 signals (26%) or 

the 5 signals (13%) chosen? And, would the choice of these signals affect the 

reconstruction scheme? During the testing procedure, it has been noticed that 

care must be taken when choosing the 26% or the 13% signals. If these signals 

are selected in a way that they are adjacent to each other (i.e., #17, #18, #19,... 

etc.), that is, in a clustered lay-out, then the reconstruction of the overall 

images becomes very poor and the resulting raw and reversed geometries are 

similar to the situation where only 1 signal (3%) is kept, in which case only 

the front and the back walls are recovered, and no distinctive flaw signals are 

present. A few runs of the program were executed with bulks of signals (10 or 

5) chosen from the beginning, the middle, and the end of the ultrasonic 

record. All six runs (three on the actual training data and three on the 

reversed training data) resulted in similar deteriorated outputs. No specific 

interpretation can be thought of at present for this discrepancy, except that the 
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Figure 6.18. Magnitude of frequency domain filter based on 
50% (Odd) of the FEM reversed geometry 
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(a) (b) 
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(c) (d) 

Figure 6.19. Reconstructed FEM reversed geometry using filter in Fig. 6.18 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of SAFT 
(d) Rectified (-6 dB threshold) SAFT image 
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(a) (b) 

(c) (d) 

Figure 6.20. Reconstructed FEM actual geometry using filter in Fig. 6.18 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.21. Magnitude of frequency domain filter based on 
50% (Even) of the FEM reversed geometry 
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Figure 6.22. Reconstructed FEM reversed geometry using filter in Fig. 6.21 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) SAFT image 
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(a) (b) 

(c) (d) 

Figure 6.23. Reconstructed FEM actual geometry using filter in Fig. 6.21 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.24. Magnitude of frequency domain filter based on 
26% (1,5,10,15,20,25,28,30,35,38) of the FEM 
reversed geometry 
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(a) (b) 

(c) (d) 

Figure 6.25. Reconstructed FEM reversed geometry using filter in Fig. 6.24 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.26. Reconstructed FEM actual geometry using filter in Fig. 6.24 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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Figure 6.27. Magnitude of frequency domain filter based on 13% 
(1,11,21,31,38) of the FEM reversed geometry 
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Figure 6.28. Reconstructed FEM reversed geometry using filter in Fig. 6.27 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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(a) (b) 

(c) (d) 

Figure 6.29. Reconstructed FEM actual geometry using filter in Fig. 6.27 
(a) Raw B-scan image 
(b) S AFT B-scan image 
(c) Magnitude of S AFT 
(d) Rectified (-6 dB threshold) S AFT image 
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signals have to be chosen in a scattered arrangement so that the whole 

medium is covered by the individual insonifying beams of the transducers. 

Second, the assessment of the DI beamformer may be looked upon in 

terms of computing the relative mean-squared error (RMSE) between the 

reconstructed and the desired images. Tables 6.1 and 6.2 show the RMSE 

results of each of the tests performed on the nonuniform actual and reversed 

records, respectively. Since the numerical values of the front and the back 

walls in the images greatly exceed those of the flaw signals, the RMSE's are 

calculated using only that portion of the signals containing the flaw 

signatures. Figures 6.30 and 6.31 show the plots of these RMSE values. Figure 

6.30 corresponds to when the optimal filter is based on the actual geometry 

(dotted line A) and then convolved with the reversed geometry (solid line B); 

and Figure 6.31 corresponds to when the filter is trained using the reversed 

apparatus (dotted line A) and then convolved with the actual geometry (solid 

line B). All four plots in the figures seem to make sense as far as the 

increasing trend the curves are acquiring as more signals are missing from 

the records. However, when lines B in both figures are compared, a few 

remarks are revealed about each of the filters. One, the filters in Figure 6.30 

appear to operate better when 50% (odd), 26% or 13% of the reversed 

geometry are kept than the filters in Figure 6.31 as they operate on the actual 

geometry when the same percentages of the signals are kept. On the other 

hand, both sets of filters seem to have similar behaviors when they are 

convolved with their respective training records. The only mismatch appears 

when 13% of the data are kept. Here, the filter in Figure 6.30 provides a better 

smoothing effect than its counterpart in Figure 6.31. 

Third, the rectified images displayed in the previous section provide 

another means of concretely measuring the level of achievement the DI 

beamformer is capable of attaining as far as flaw sizing is concerned. The 

widths of the flaws as well as their depths from the surface of the specimen 

are measured using a straight edge and compared relative to the width (1" 

line scan) and the height (1" thick) of the images. These dimensions are 
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Table 6.1. Relative Mean-Squared Error when the filters are based on the 
FEM actual geometry 

Relative Mean-Squared Error (%) 

Records Kept Actual Reversed 

50% (odd) 3.29 12.94 

50% (even) 4.36 32.36 

26% 38.39 42.77 

13% 44.00 56.54 

3% 129.09 137.78 



www.manaraa.com

121 

Table 6.2. Relative Mean-Squared Error when the filters are based on the 
FEM reversed geometry 

Relative Mean-Squared Error (%) 

Records Kept Actual Reversed 

50% (odd) 32.54 4.40 

50% (even) 13.29 3.38 

26% 49.14 29.67 

13% 82.37 81.04 

3% 129.39 137.69 
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Figure 6.30 Plot comparing RMSE values when filters are 
trained using FEM actual geometry and applied 
to FEM actual geometry and to FEM reversed 
geometry. 
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Figure 6.31 Plot comparing RMSE values when filters are trained 
using FEM reversed geometry and applied to FEM 
reversed geometry and to FEM actual geometry. 
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Table 6.3. Flaw sizing in both the longitudinal and the lateral directions when 
filters are designed using the actual geometry and applied to the 
reversed geometry 

Depth Dimension Width Dimension 

Actual Reversed Actual Reversed 
Kept Records Slot # Geometry Geometry Geometry Geometry 

50% (Odd) 

50% (Even) 

26% 

13% 

3% 

1 0.74" 0.73" 0.125" 0.125" 

2 0.50" 0.50" 0.125" 0.125" 

1 0.74" 0.73" 0.125" 0.129" 

2 0.50" 0.50" 0.125" 0.129" 

1 0.72" 0.71" 0.135" 0.146" 

2 0.49" 0.50" 0.146" 0.167" 

1 0.72" 0.71" 0.129" 0.167" 

2 0.47" 0.48" 0.0625" 0.104" 
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actual and the reversed geometries, in either test. This is only coincidental 

since the cross-over is otherwise independent of the amount of missing 

signals for the cases studied. 

The following chapter gives a brief summary of the achievements 

presented in this research topic. Also in that chapter, special emphasis is put 

forth on remarks pertaining to the beamformer technique just described, 

followed by a short discussion of experimental suggestions and further work 

developments. 
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CHAPTER 7. CONCLUSION 

The major objective of this research work has been to investigate a 

number of methods ranging from the modeling of ultrasonic NDT wave 

phenomena and using the resulting model to test the SAFT algorithm by 

mimicking the transducer measurements required by SAFT, to the 

investigation and application of a newly developed beamforming technique, 

namely, the data independent beamformer, used to predict ultrasonic 

signatures from nonuniformly spaced transducer baselines. This chapter 

summarizes the main contributions and suggests further areas for future 

study. 

Milestones and Major Work Accomplishments 

This dissertation has illustrated that the finite element method can 

indeed be adopted as a test bed for studying the efficaciousness of the SAFT 

algorithm. One of the advantages of this modeling technique lies in its 

flexibility as far as the material properties are concerned. Although FEM is 

used in this work to mimic the SAFT measurements in a Plexiglass™ 

sample, other materials, such as composites, can also be modeled. Due to time 

constraints, only Lucite was used as the test piece. With this in mind, the 

various factors affecting the reconstruction scheme, such as material type, 

flaw size, flaw depth within the material, and material geometry, are 

incorporated as variables in the apparatus, and enable one to evaluate the 

final reconstructed image. Tests show that the flaws were not only sized in 

the longitudinal direction, but also in the lateral direction, using the shear 

components produced by the FEM model. This task may become difficult if 

measurements are collected during a laboratory experiment. However, using 

the finite element model, a careful study can be made to determine the 

sensitivity of the parameters involved in the SAFT reconstruction algorithm 

to changes in material variables. 
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Using the same finite element model as a test bed, another study was 

made to examine how well the data independent beamformer works in the 

presence of nonuniformly spaced transducer locations scanning across the 

surface of a test specimen. By assuming various baseline configurations to the 

collected ultrasonic A-scan signals, the weights of the beamformer are 

designed, and test comparisons confirm that the resulting optimal filters are 

capable of not only predicting those missing signals in the training record 

geometry, but also in a different geometry, considered here to having the 

reversed shape of the training record, with the same number of missing A-

scans. 

In summary, the following few points can be identified to describe the 

overall assessment of the beamforming method: 

1. The data independent beamformer is a very useful technique, 

especially when prompt and accurate testing are major requirements 

in a manufacturing environment of structural components. 

2. The beamformer is very simple to understand and implement, and 

requires no a priori knowledge of the statistics of the input signals. 

However, care must be taken when the filter is presented with a data 

record. The record must contain the same number of missing signals 

similar to the record used to train the filter. Otherwise, erroneous 

results will occur. 

3. Although the performance of the beamformer is excellent even when 

87% of the signals are missing, except for a few discrepancies, it is wise 

to note that this high level of missing signals constitutes an upper 

threshold of the maximum allowable degree of freedom in which the 

beamformer can operate with a relatively minimum level of error. 

Therefore, if time is not a major issue, testing an ultrasonic data set 

with 26% available A-scan signals can be as efficient and more reliable 

than testing a record with 13% or less available A-scans. 
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4. The one advantage of this beamforming technique lies within its 

practicality as far as the areas in which it can be used. Beside 

nondestructive testing of materials, the fields of radar (i.e., synthetic 

aperture radar, SAR), and medical ultrasound would make adequate 

grounds for the application of this beamformer. 

5. Finally, and as a general remark, when using this deconvolution 

scheme, the Rule of Thumb, which states that the transducer 

separation between adjacent positions over a test sample must be at 

least one-half-wavelength (i.e., X/2) in order to achieve good 

longitudinal and lateral resolutions, is no longer true. Note that by 

keeping 10 A-scans (26%), the transducer separation is increased to 

approximately 2X; and when 5 A-scans (13%) are kept, this separation is 

further increased to about 5A,, reducing the scanning time by 87% in the 

latter case, and by 74% in the previous case. 

Future Work 

The work reported in this dissertation about the finite element 

modeling technique, SAFT, and the data independent beamformer, clearly 

shows that these methodologies are quite powerful at achieving their 

respective goals. However, further development and refinement of these 

processes is desirable, in order to consider all practical factors. Proposals for 

additional studies may include the following avenues: 

1. Use finite element modeling to simulate more complicated 

materials, such as composites; as well as more complex material 

geometries. 

2. Again use the resulting model from 1. as a test bed to check for the 

sensitivity of the parameters of the SAFT algorithm. 

3. In a similar fashion, acquire the same model, once more as a test bed, to 
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APPENDIX A. SAFT PROGRAMS 
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I* mm ### */ 
/* ### Synthetic Aperture Focusing Technique ### */ 
/* ### in Ultrasonic NDE ### */ 
/* ### For ### */ 
/* ### EXPERIMENTAL DATA ### */ 
/* ### ### */ 
/* ### Synthetic Aperture Focusing Technique has been adopted ### */ 
/* ### to attain high resolution in both direction,and chara- ### */ 
/* ### cterization defect,such as size,shape and orientation. ### */ 
/* ### This routine produces corelatwl A-scans by summing up ### */ 
/* ### received ultrasonic signals which are delayed to com- ### */ 
/*### pensate for ultrasonic path delay. ###*/ 
/*### ### */ 
/*### processing flow ###*/ 
/* ### 1) initial parameter set up ### */ 
/* ### 2) inputting raw A-scan data ### */ 
/* ### 3) directivity correction ### */ 
/* ### 4) delay and sum ### */ 
/* ### 5) output correlated A-scans ### */ 
/* ### ### •/ 
/* ### Note: This program is designed to work ONLY on experi- ### */ 
/* ### mental data (Plexiglass or Graphite/Epoxy) ### */ 
/* ### ### */ 

#include <X11/Xlib.h> 
#include <X11/Xutil.h> 
#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#define SQR(a) ((a)*(a)) 
#define PI 3.14159265358979323846 

Di^lay *d; 
Window win,w,wl,w2; 
GC gc; 
XPoint p[700][2048]; 

main() 
{ 

int ndat,nscan,nbyte,fpl,nrl,i,h,j,k,gdati,c_flag,**ipdat; 
int sa_size,q_flag,ndir,t_delay,a_flag,dir_angle,add_no,f_flag; 
int **imatrix(),sp; 
char *file_name,*file_namel ,*file_name2; 
char *file_name3,*file_name4; 
float **a_dat,cond[30],imax,imin,scale,dumy[2048],dumyl,dumy2; 
float dx,dt,u_vel,*dir_dat,ls_angle; 
float **c_dat,limit,fs; 
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float *vectorO,**matrix(); 
double pass; 
voidnreiTor(),free_vector(),free_matrix(),free_imatrix(); 
FELE *fp, *fopen(); 

unsigned int w_width,w_height,w_widthl,w_heightl; 
int x_st,y_st,gdat; 
int x_stO,y_stO,x_stl,y_stl; 
float w_max; 

/* ### parameters setting for X-Window ### */ 

d = XOpenDisplay (NULL); 

x_st = 40 ,y_st = 20; 
x_stO = 40 ,y_stO = 500; 
x_stl = 600,y_stl = 20; 
w_width = 512,w_height = 400; 
w_widthl= 400,w_heightl= 400; 

w = XCreateSimpleWindow 
(d,RootWindow(d,0),x_st,y_st,w_width,w_height,2,0,l); 

wl= XCreateSimpleWindow 
(d,RootWindow(d,0),x_st0,y_st0,w_width,w_height,2,0,l); 

w2= XCreateSimpleWindow 
(d,RootWindow(d,0),x_st 1 ,y_st 1 ,w_width 1 ,w_height 1,2,0,1); 
*1 

/* ### 1) initial parameter set ### */ 

printf("\n Choose raw data filename: \n 1) Plexiglass data 
\n 2) Graphite/Epoxy DataXn"); 
scanf("%d",&f_flag); 

if (f_flag == 1) { 
file_name = "plsechplex.dat"; 
file_namel = "plexraw.dat"; 
file_name2 = "plexsaf.dat"; 
file_name3 = "plexenv.dat"; 

if(f_flag==2){ 
file_name = "plsechcomp.dat"; 
file_namel = "compraw.dat"; 
file_name2 = "compsaf.dat"; 
file_name3 = "compenv.dat"; 

} 

printf("\n Enter the transducer separation (mm)\n"); 
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scanf("%f',&dx); 
printf("\n Enter the sampling frequency (MHz)Nn"); 
scanf("%f',&fs); 
dt = 1/fs; 

printf("\n Enter the ultrasonic sound velocity in specimen (mm/usec)\n"); 
scanf("%f',&u_vel); 

printf("\n Enter the number of data points per A-scan\n"); 
scanf("%d",&ndat); 

printf("\n Enter the total number of A-scansNn"); 
scanf("%d",&nscan); 

printf("\n Choose the method to compute synthetic aperture: \n 1) user chosen 
aperture or \n 2) aperture computed by Ae method of fixed angleVi"); 
scanf("%d",&a_flag); 

if (a_flag == 1) { 
printf("Nn Enter synthetic aperture size (number of A-scans) \n"); 
scanf("%d",&sa_size); 

} 
else { 

printf("\n Enter the critical angle of the beam (degrees)Nn"); 
scanf("%f',&ls_angle); 

/* ### 2) Open file to input raw A-scans data ### */ 

if (a_flag == 1) { /* 0 padding for extension of edge data */ 
add_no = (int) (sa_size-l)/2; 

} 
else { 

add_no = (int) (u_vel*dt*ndat*tan(ls_angle/180*PI)/2/dx); 

a_dat = matrix(l,nscan+2*add_no,l,ndat); 

for(h=l;h<=nscan+2*add_no;h++) { /* 0 padding for edge data */ 
for(i=l;i<=ndat;i++) { 

a_dat[h][i] = 0; 
} 

) 
printf("\n Reading the raw dataNn"); 
fip = fopen(file_name,"r"); /* inputting raw data */ 

for(i=0;i<ndat;i++) { 
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fscanf(^,"%f',&dumy[i]); 

fscanf(fp,"%f%f',&dumyl,&dumy2); 
for(i=0;i<ndat;i++) { 

fscanf(fp,"%f',&dumy[i]); 

fscanf(fp,"%f%f',&dumyl,&dumy2); 

for(h=l;h<=nscan-l;h++) { /* h:xducer posi. i;data points per A-scan */ 
if(h!=1 ) {fscanf(fp," %f%f',&dumy 1 ,&dumy2);} 
for(i=l;i<=ndat;i++) { 

fscanf(fip,"%f',&a_dat[h+add_no][i]); 

} ^ 
fclose(fp); 
printf('V Finished reading the raw dataNn"); 

/* ### Convert Raw Data to Image Processor Format ## */ 

ipdat = imatrix( 1 .nscan, 1 ,ndat); 

imax = a_dat[add_no+l][l], imin = a_dat[add_no+l][l]; 

for(h=add_no+l ;h<=add_no+nscan;h++) { 
for(i=l;i<=ndat;i++) { 

if(imax<a_dat[h][i]) imax = a_dat[h][i]; 
if(imin>a_dat[h][i]) imin = a_dat[h][i]; 

} 
} 

scale = 255./(imax-imin); 

printf("\n max = %f min = %f scale = %f\n",imax,imin,scale); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

ipdat[h][i] = (int)(scale*(a_dat[h+add_no][i] - imin)); 

} ^ 

fp = fopen(file_namel ,"w"); /* output raw data of happi format */ 
fprintf(fp,"%d\n%d\n",512,512); 

for(i=l;i<=ndat/4;i++) { 
for(h=40;h<40+512;h++) { 

fprintf(fp,"%dNn",ipdat[h][i]); 

} ^ 



www.manaraa.com

146 

fclose(fp); 

printf("\n Would you like to plot the raw data using X-Window? 
(yes = l)\n"); 
scanf("%d",&q_flag); 

if(q_flag == 1) { 

mapping(&a_dat[add_no+l],nscan,ndat,&gdat,w_width,w_height,&w_max,0,&s 
p); 
graph(d,w,gdat,nscan,&sp); 

printf("\n Would you like to continue this process? (yes = l)Nn"); 
scanf("%d",&q_flag); 
if (q_flag != 1) exit(0); 

/* 
for(h=add_no;h<=nscan+add_no-l;h++) { 

printf("scanning no = %dSn",h); 
for(i=1 ;i<=ndat;i++) { 

pnntf("%d %f\n",i,a_dat[h][i]); 

I 
*1 

/* ### 3) directivity correction ### */ 

printf(" Would you like to account for the directivity of the 
transducer (yes=l no=0)^"); 
scanf("%d",&q_flag); 

ndir = 90; /* dir_angle from 0 to 90 deg a deg pitch */ 
dir_dat = vector(0,ndir); 

dir_cal(dir_dat,q_flag,0,ndir); 

/* ### 4) delay and sum ### */ 

printf("\n S AFT in progress \n"); 

c_dat = matrix(l,nscan,l,ndat); 

if (a_flag == 1) { /* fixed number aperture */ 
for(h=l;h<=nscan;h++) { 

fbr(i=l;i<=ndat;i++) { 
c_dat[h][i] = a_dat[h+add_no][i]; 
for(j=l;j<=(sa_size-l)/2;j++) { 
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pass = SQR(i)+SQR(2*dx*j/u_vel/dt); 
t_delay = (int) sqrt(pass); 
dir_angle = (int)fabs((acos((double)(i)/t_delay)*180/PI)); 
c_dat[h][i] = c_dat[h][i]+( a_dat[h-j+add_no][t_delay] 
+ a_dat[h+j+add_no][t_delay] )/dir_dat[dir_angle]; 

} 
} 

} 

1 
else { /* fixed angle aperture */ 
for(h=l;h<=nscan;h++) { 

for(i=l;i<=ndat;i++) { 
c_dat[h][i] = a_dat[h+add_no][i]; 
limit = u_vel*i*dt*tan(ls_angle/180.0*PI)/2/dx; 
for(j=l;j<=limit;j++) { 

pass = SQR(i)+SQR(2*dx*j/u_vel/dt); 
t_delay = (int) sqrt(pass); 
dir_angle = (int)fabs((acos((double)(i)/t_deIay)*180/PI)); 

c_dat[h][i] = c_dat[h][i]+( a_dat[h-j+add_no][t_delay] 
+ a_dat[h+j+add_no][t_delay] )/dir_dat[dir_angle]; 

) 
} 

printf("\n S AFT has successfully ended Nn"); 

/* ### Convert data to Image Processor Format ### */ 

imax = c_dat[l][l], imin = c_dat[l][l]; 

for(h=l;h<=nscan;h++) { 
fbr(i=l;i<=ndat;i++) { 

if(imax<c_dat[h][i]) imax = c_dat[h][i]; 
if(imin>c_dat[h][i]) imin = c_dat[h][i]; 

) 
1 

scale = 255./(imax-imin); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

ipdat[h][i] = (int)(scale*(c_dat[h][i] - imin)); 

) 
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/* ### 5) output correlated A-scans ### */ 

printf("\n Writing data out to files \n"); 

fp = fopen(file_name2,"w"); 
fprintf(fp,"%d\n%d\n",512,512); 

for(i=l;i<=ndat/4;i++) { 
for(h=40;h<40+512;h++) { 

fprintf(fp,"%dNn",ipdat[h][i]); 
} 

} 
fclose(fp); 

/* ### graphic routine using X-Window ### */ 

printf("\n Would you like to plot the S AFT data using X-Window? 
(yes = l)\n"); 
scanf("%d",&q_flag); 
if(q_flag == 1) { 

mapping(c_dat,nscan,ndat,&gdat,w_width,w_height,&w_max,0,&sp); 
graph(d,w 1 ,gdat,nscan,&sp); 

printf("\n Computing the envelope of the S AFT image \n"); 

envlp(c_dat,nscan,ndat); 

/* ### output envelop detected data ### */ 

imax = c_dat[l][l], imin = c_dat[l][l]; 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

if(imax<c_dat[h][i]) imax = c_dat[h][i]; 
if(imin>c_dat[h][i]) imin = c_dat[h][i]; 

} 
) 

scale = 255./(imax-imin); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

ipdat[h][i] = (int)(scale*(c_dat[h][i] - imin)); 

) 
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fp = fopen(fîle_name3,"w"); 
fprintf(fp,"%d\n%d\n",512,512); 
for(i=l;i<=ndat/4;i++) { 

for(h=40;h<40+512;h++) { 
fprintf(fp,"%dNn",ipdat[h][i]); 

) ^ 
fclose(fp); 

printf("Sn Would you like to plot the envelope of S AFT image using 
X-Window? (yes = l)\n"); 
scanf("%d",&q_flag); 
if(q_flag ==1) { 

mapping(c_dat,nscan,ndat,&gdat,w_widthl,w_heightl,&w_max,0,&sp); 
graph(d,w2,gdat,nscan,&sp); 

1 
scanf("%d",&h); 
XCloseDisplay (d); 

/* ### memory free ### */ 

free_vector(dir_dat,0,ndir); 
free_matrix(a_dat, 1 ,nscan+2*add_no, 1 ,ndat) ; 
free_matrix(c_dat, 1 ,nscan, 1 ,ndat); 
free_imatrix(ipdat,l,nscan,l,ndat); 

graph(d,win,gdat,ntime,sp) 
int gdat,ntime,*sp; 

int i; 
XSetWindowAttributes a; 
unsigned int Lwidth; 

a.override_redirect = 1; 
XChangeWindowAttributes (d,win,CWOverrideRedirect,&a); 

XMapWindow (d,win); 

gc = XCreateGC (d,win,0,0); 

Lwidth = 1; 

XSetLineAttributes(d,gc,l_width,LineSolid,CapRound,JoinRound); 
printfC'step = %d\n",*sp); 
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for(i=0;i<ntime/(*sp);i++) { 
XDrawLines (d,win,gc,p[i] ,gdat,CoordModeOrigin); 

} 

XFlush(d); 

) 
mapping(dat,nscan,ndat,gdat,w_width,w_height,w_max,flag,sp) 
unsigned int w_height,w_width; 
int nscan,ndat,*gdat,flag,sp[l]; 
float **dat,*w_max; 

{ 
float ndd,step,nc; 
int nd,i,h,i_sift,ns; 

i_sift = 10; 

printf(" Enter the stepsize of the plot (once per ? A-scans)\n"); 
scanf("%d",sp); 

ns = (int)(((float) w_width)/nscan*sp[0]); 

ndd = ((float) (ndat))/(w_height-i_sift); 

if(ndd<=1.0) { 
nd= 1; 
step = ndd; 

else { 
nd = (int)ceil(ndd); 
step = 1; 

if(flag = 0) { 
*w_max = 0; 

for(h=l;h<=nscan;h++) { 
fbr(i=l;i<=ndat;i++) { 

if(*w_max<fabs(dat[h][i])) *w_max = fabs(dat[h][i]); 
} 

} 
} 

no = *w_max/ns*2; 

*gdat = (int)(ndat/nd) + ndat%nd; 



www.manaraa.com

151 

for(h=0;h<nscan/sp[0];h++) { 
for(i=0;i<*gdat;i++) { 

p[h][i].x = (short)(dat[h*sp[0]+l][i*nd+l]/nc*3+ns*(h+0.5)); 
p[h][i].y = (short)(i/step+i_sift); 

} ^ 
} 
envlp(dat,nscan,ndat) 
float **dat; 
int ndat,nscan; 
{ 

int fft_flag,i,h; 
float *fft_dat; 
float *vector(); 
void fourl(),free_vector(); 

fft_dat = vector(l,2*ndat); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

fft_dat[2*i-l] = dat[h][i]; 
fft_dat[2*i] =0; 

} 

fft_flag = 1; 

four 1 (fft_dat,ndat,fft_flag); 

for(i=ndat+l;i<=2*ndat;i++) { 
fft_dat[i] = 0; 

} 

fft_dat[l]=0,fft_dat[2] = 0; 

fft_flag = -l; 

four 1 (fft_dat,ndat,fft_flag); 

for(i=l;i<=ndat;i++) { 
dat[h][i] =sqrt(fft_dat[2*i-l]*fft_dat[2*i-l] + 

fft_dat[2*i]*fft_dat[2*i]); 
1 

} 

fTee_vector(fft_dat, 1,2*ndat); 

} 
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I* mm ###*/ 
/* ### Synthetic Aperture Focusing Technique ### */ 
/* ### in Ultrasonic NDE ### */ 
/* ### For ### */ 
/* ### FINITE ELEMENT SIMULATED DATA ### •/ 
/* ### ### */ 
/* ### ### */ 
/* ### Synthetic Aperture Focusing Technique has been adopted ### */ 
/* ### to attain high resolution in both direction,and charac- ### */ 
/* ### terization defect,such as size,shape and orientation. ### */ 
/* ### This routine produces corelated A-scans by summing up ### */ 
/* ### received ultrasonic signals which are delayed to com- ### */ 
/*### pensate for ultrasonic path delay. ###*/ 
/* ### ### */ 
/* ### processing flow ### */ 
/* ### 1) initial parameter set up ### */ 
/* ### 2) Reading raw A-scans data ### */ 
/* ### 3) directivity correction ### */ 
/* ### 4) delay and sum ### */ 
/* ### 5) output correlated A-scans ### */ 
/* ### ### */ 
/* ### Note: This program is designed to work ONLY on Finite ### */ 
/* ### Element simulated data (regular or reversed geo- ### */ 
/* ### metrics) ## */ 
/* ### ### */ 

#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#defme SQR(a) ((a)*(a)) 
#defme PI 3.14159265358979323846 

main() 
{ 

int ndat,nscan,nbyte,fpl,nrl,i,h,j,k,gdati,c_flag,**ipdat; 
int sa_size,q_flag,ndir,t_delay,a_flag,dir_angle,add_no,f_flag; 
int **imatrix(),sp,ndatl,xs,zs; 
char file_name[50],*file_name 1 ,*file_name2; 
char *file_name3,*file_name4; 
float **a_dat,cond[30],imax,imin,scale,**dumy,dumyl,dumy2; 
float dx,dt,u_vel,*dir_dat,ls_angle; 
float **c_dat,limit,fs; 
float *vector(),**matrix(); 
double pass; 
void nrerror(),free_vector(),free_matrix(),ftee_imatrix(); 
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FILE *fp, *fopen(); 

float w_max; 

/* ### 1) initial parameter setup ### */ 

/* file_name = "finite.dat, finitel.dat, ascanl, or ascan2"; */ 
printf("\n Enter the name of the FEM data file: \n"); 
scanf("%s",file_name); 

file_namel = "finraw2.dat"; 
file_name2 = "finsaf2.dat"; 
file_name3 = "finenv2.dat"; 

printf("\n Enter the transducer separation (mm)\n"); 
scanf("%f',&dx); 

printf("\n Enter the sampling frequency (MHz)Nn"); 
scanf("%f',&fs); 

dt = 1/fs; 

printf("\n Enter the ultrasonic sound velocity in specimen (mm/usec)\n"); 
scanf("%f',&u_vel); 

printf("\n Enter the number of data points in each A-scan & cal points 
(cal must be power of 2)\n"); 
scanf("%d%d",&ndatl,&ndat); 

printf("\n Enter the total number of A-scans\n"); 
scanf("%d",&nscan); 

pnntf("\n Choose the method to compute synthetic aperture: \n 1) user chosen 
aperture or \n 2) aperture computed by the method of fixed angleSn"); 
scanf("%d",&a_flag); 

if (a_flag == 1) { 
printf("\n Enter the synthetic aperture size (number of A-scans) W); 
scanf("%d",&sa_size); 

} 
else { 

printf("\n Enter the critical angle of the beam (degrees)\n"): 
scanf("%f',&ls_angle); 

printf("\n Enter the skip separation of the grid pixels (in the x & z directions) \n"); 
scanfC'%d%d",&xs,&zs); 
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/* ### 2) Open file to input raw A-scans data ### */ 

if (a_flag == 1) { /* 0 padding for extension of edge data */ 
add_no = (int) (sa_size-l)/2; 

) 

else { 
add_no = (int) (u_vel*dt*ndat*tan(ls_angle/180*PI)/2/dx); 

dumy = matrix(l,nscan,l,ndat); 

printf("\n Reading the raw dataNn"); 
^ = fopen(file_name,"r"); /* inputting raw data */ 

for(h=l;h<=nscan-l;h++) { /* h:xducer posi. i:data points per A-scan */ 
for(i=l;i<=ndatl;i++) { 

/* Execute the following statement if using the longitudinal displ. */ 

fscanf(fp,"%f%f',&dumy[h][i],&dumyl); 

/* Execute the following statement if using the lateral displacements */ 

/* fscanf(fp,"%f%f',&dumyl,&dumy[h][i]); */ 

} ^ 
fclose(fp); 
printf('V Finished reading the raw dataNn"); 

a_dat = matrix(l,nscan+2*add_no,l,ndat); 

for(h=l;h<=nscan+2*add_no;h++) {/* 0 padding edge of data */ 
fbr(i=l;i<=ndat;i++) { 

a_dat[h][i] = 0; 
) 

1 

for(h=l;h<=nscan/xs;h++) { 
for(i=l;i<=ndat/zs;i++) { 

a_dat[h+add_no][i] = dumy[h*xs][i*zs]; 
) 

1 
/* ### Convert Raw Data to Image Processor Format ### */ 

ipdat = imatrix(l,nscan,l,ndat); 
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imax = a_dat[add_no+l][200], imin = a_dat[add_no+l][200]; 

for(h=add_no+l ;h<=add_no+nscan;h++) { 
for(i=200;i<=ndatl;i++) { 

if(imax<a_dat[h][i]) imax = a_dat[h][i]; 
if(imin>a_dat[h][i]) imin = a_dat[h][i]; 

} 
} 

scale = 255./(imax-imin); 

printf("\n max = %e min= %e scale = %e\n",imax,imin,scale); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

ipdat[h][i] = (int)(scale*(a_dat[h+add_no][i] - imin)); 
if(ipdat[h][i]>255) ipdat[h][i] = 255; 

} ^ 

fp = fopen(file_namel ,"w"); /* output raw data of happi format */ 
fprintf(fp,"%d\n%d\n",ndatl/2,nscajT/xs); 

for(i=l;i<=ndatl/2;i++) { 
for(h=l;h<=nscan/xs;h++) { 

fprintf(fp,"%d\n",ipdat[h][i*2]); 

} ^ 
fclose(fp); 

printf("\n Would you like to continue this process? (yes = l)\n"); 
scanf("%d",&q_flag); 
if (q_flag != 1) exit(0); 

for(h=add_no;h<=nscan+add_no-1 ;h++) { 
printfC'scanning no = %dSn",h); 

for(i=l;i<=ndat;i++) { 
printf("%d %f\n",i,a_dat[h][i]); 

} 

1 

/* ### 3) directivity correction ### */ 

printf("\n Would you like to account for the directivity of the 
transducer? (yes=l no=0)\n"); 
scanf("%d",&q_flag); 
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ndir = 90 ; /* dir_angle from 0 to 90 deg a deg pitch */ 
dir_dat = vector(0,ndir); 

dir_cal(dir_dat,q_flag,0,ndir); 

/* ### 4) delay and sum ### */ 

printf("\n S AFT in progress \n"); 

c_dat = matrix(l,nscan,l,ndat); 
for(h=l;h<=nscan;h++) { 

for(i=l;i<=ndat;i++) { 
c_dat[h][i] =0; 

} 
} 

if (a_flag == 1) { /* fixed number aperture */ 
for(h=l;h<=nscan;h++) { 

for(i=l;i<=ndat;i++) { 
c_dat[h][i] = a_dat[h+add_no][i]; 
for(j=l;j<=(sa_size-l)/2;j++) { 

pass = SQR(i)+SQR(2*dx*j/u_vel/dt); 
t_delay = (int) sqrt(pass); 
dir_angle = (int)fabs((acos((double)(i)/t_delay)*l 80/PI)); 
c_dat[h][i] = c_dat[h][i]+( a_dat[h-j+add_no][t_delay] 

+ a_dat[h+j+add_no][t_delay] )/dir_dat[dir_angle]; 

} ^ 
) 
} 
else { /* fixed angle aperture */ 
for(h=l;h<=nscan;h++) { 

fbr(i=l;i<=ndat;i++) { 
c_dat[h][i] = a_dat[h+add_no][i]; 
limit = u_vel*i*dt*tan(ls_angle/180.0*PI)/2/dx; 
for(j=l;j<=limit;j++) { 

pass = SQR(i)+SQR(2*dx*j/u_vel/dt); 
t_delay = (int) sqrt(pass); 
dir_angle = (int)fabs((acos((double)(i)/t_delay)*l 80/PI)); 

c_dat[h][i] = c_dat[h][i] 
+( a_dat[h-j+add_no][t_delay] + 
a_dat[h+j+add_no][t_delay] ) /dir_dat[dir_angle]; 

) ^ 
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1 
1 

printf("\n S AFT has successfully endedSn"); 

/* ### Convert data to Image Processor Format ### */ 

imax = c_dat[l][200], imin = c_dat[l][200]; 

for(h=l;h<=nscan;h++) { 
for(i=200;i<=ndatl;i++) { 

if(imax<c_dat[h][i]) imax = c_dat[h][i]; 
if(imin>c_dat[h][i]) imin = c_dat[h][i]; 

} 
} 

scale = 255./(imax-imin); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

ipdat[h][i] = (int)(scale*(c_dat[h][i] - imin)); 
if(ipdat[h][i]>255) ipdat[h][i] = 255; 

} ^ 

/* ### 5) output correlated A-scans ### */ 

printf("\n Writing data out to files \n"); 

fp = fopen(file_name2,"w"); 
fprintf(fp,"%dNn%d\n",ndatl/2,nscan/xs); 
for(i=l;i<=ndatl/2;i++) { 

for(h=l;h<=nscan/xs;h++) { 
fprintf(fp,"%d\n",ipdat[h][i*2]); 

} ^ 
fclose(fp); 

printf("\n Computing the envelope of the S AFT image \n"); 

envlp(c_dat,nscan,ndat); 

/* ### output envelop detected data ### */ 

imax = c_dat[l][200], imin = c_dat[l][200]; 
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for(h=l;h<=nscan;h++) { 
for(i=200;i<=ndatl-200;i++) { 

if(iniax<c_dat[h][i]) imax = c_dat[h][i]; 
if(imin>c_dat[h][i]) imin = c_dat[h][i]; 

} 
} 

scale = 255./(imax-imin); 

for(h=l;h<=nscan;h++) { 
for(i=l;i<=ndat;i++) { 

ipdat[h][i] = (int)(scale*(c_dat[h][i] - imin)); 
if(ipdat[h][i]>255) ipdat[h][i] = 255; 

) ^ 

fp = fopen(file_name3,"w"); 
fprintf(fp,"%dNn%dSn",ndatl/2,nscan/xs); 
for(i=l;i<=ndatl/2;i++) { 

for(h=l;h<=nscan/xs;h++) { 
fprintf(fp,"%d\n",ipdat[h][i*2]); 

} ^ 
fclose(fp); 

/* ### memory free ### */ 

free_vector(dir_dat,0,ndir); 
free_matrix(a_dat,l,nscan+2*add_no,l,ndat); 
free_matrix(c_dat, 1 ,nscan, 1 ,ndat) ; 
free_imatrix(ipdat, 1 ,nscan, 1 ,ndat); 

envlp(dat,nscan,ndat) 
float **dat; 
int ndat.nscan; 
{ 

int fft_flag,i,h; 
float *fft_dat; 
float *vector(); 
void fourl(),free_vector(); 

fft_dat = vector(l,2*ndat); 

for(h=l;h<=nscan;h++) { 
fbr(i=l;i<=ndat;i++) { 
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fft_dat[2*i-l]=dat[h][i]; 
fft_dat[2*i] =0; 

} 

fft_flag = 1; 

fourl (fft_dat,ndat,fft_flag); 

for(i=ndat+l;i<=2*ndat;i++) { 
fft_dat[i]=0; 

} 

fft_dat[l] = 0, fft_dat[2] = 0; 

fft_flag = -l; 

four 1 (fft_dat,ndat,fft_flag); 

for(i=l;i<=ndat;i++) { 
dat[h][i] =sqrt(fft_dat[2*i-l]*fft_dat[2*i-l] + 

fft_dat[2*i]*fft_dat[2*i]); 
} 

) 

free_vector(fft_dat, 1,2*ndat); 
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BEAMFORMING IN NDE 
** 

** 

** 

C** The main objective of this progr^ is to use a beamfomiing ** 
C** technique to estimate an ultrasonic signal (or signais) ** 
C** arriving from a desired direction during a nondestructive ** 
C** evaluation of isotropic and anisotropic materials. ** 
C** A data independent Beamformer is adopted for this study. ** 

** 

C** Written on: Tuesday 27 November, 1990 ** 
C** Updated: Friday 13 December, 1991 ** 

parameter (nlrec=38,n2rec=600,nnpts=700,llpts=1024,kpts=2048) 
parameter (nn=38*38,11=1024*1024,nl=38* 1024,kp=2*2048) 
character* 15 femname,femname 1 ,filename,expdata 
integer vc,vs 
realdi,focl,xpeak,xxpeak,xmse,sum,amp 

real map(n2rec,kpts),map 1 (n2rec,kpts) 
real data(kpts),datal(kpts),rdata(kpts),indx(nlrec),ipvt(nlrec) 
real ecco(llpts),ecco2(n lrec,nnpts) 
real lon(nnpts),lat(nnpts) 
real llon(nlrec,llpts),llat(nlrec,lIpts) 
real ecco3(nlrec,llpts),necco(nlrec,llpts),neccol(nlrec,nnpts) 
real xr(nl),xi(nl),ur(nn),ui(nn),vr(nn),vi(nn) 
real lonl(l^ts),datl(kp),dat2(kp) 
real ecc2(n lrec,kpts),necc 1 (n lrec,kpts) 

complex eccol(llpts,nlrec),x(llpts,nlrec),y(llpts,nlrec) 
complex ecc 1 (llpts,n lrec),xl (llpts,n Irec) 
complex xt(n 1 rec,llpts),xx(llpts,n Irec) ,iden(n 1 rec,n 1 rec) 
complex filter(nlrec,nlrec),out(llpts,nlrec),outl(llpts,nlrec) 
complex work(nlrec),s(nlrec),e(nlrec),u(nlrec,nlrec),v(nlrec,nlrec) 
complex ut(n Irec,n lrec),vt(n lrec,n Irec),ss(n Irec,n Irec) 
complex subinv(n 1 rec,n 1 rec),xinv(n 1 rec,n 1 rec) 
complex prod(n lrec,n 1 rec),prod 1 (n lrec,n lrec),prod2(n Irec.llpts) 
complex image(llpts) 

type*,' ' 
type*,' ' 
type*,'Enter the velocity of sound (m/sec) in the coupling medium:' 
read*,vc 
type*,' ' 

type*,' ' 
type*,' WELCOME TO BEAMFORMING ' 
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type*,"Enter the velocity of sound (m/sec) in the specimen:' 
read*,vs 
type*,' ' 
type*,'Enter the number of points per A-scan record:' 
read*,npts 
type*,' ' 
type*,'Enter the number of collected A-scan records:' 
read*,nrec 
type*,' ' 

C 

if(npts.le.32) Ipts = 32 
if(npts.gt.32 .and. npts.le.64) Ipts = 64 
if(npts.gt.64 .and. npts.le.l28) Ipts = 128 
if(npts.gt.l28 .and. npts.le.256) Ipts = 256 
if(npts.gt.256 .and. npts.le.512) Ipts = 512 
if(npts.gt.512 .and. npts.le.l024) Ipts = 1024 
if(npts.gt.l024 .and. npts.le.2048) Ipts = 2048 

type*,' ' 
type*,' Ipts =',lpts 
type*,' ' 

C 

type*,' ' 
type*,'Would you like to work with the:' 
type*,' ' 
type*,' 1. U-Displacements (Longitudinal).' 
type*,' 2. V-Displacements (Lateral).' 
type*,' 3. The magnitude of the above two.' 
type*,' ' 
read*,iwork 
type*,' ' 
type*,' ' 
tj^e*,'Enter the name of the Finite Element data file' 
type*,'(regular or reversed geometry)' 
type*,' ' 
read '(a)',femname 

C 
c READ THE PULSE-ECHO RECORDS 
C 

type*,' ' 
type*,' READING THE PULSE-ECHOS .... PATIENCE ! ! !' 
type*,' ' 
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open( 1 ,fîle=feinname) 

do 115 i = 1, nrec 

do 114 j = 1, npts 

read(l,*) lon(j), lat(j) 

if(iwork.eq.l) ecco2(iJ) = lon(j) 

if(iwork.eq.2) ecco2(i j) = lat(j) 

if(iwork.eq.3) ecco2(i,j) = sqrt(lon(j)*lon(j) + lat(j)*lat(j)) 

if(iwork.eq.l) ecco3(iJ) = lon(j) 

if(iwork.eq.2) ecco3(i j) = lat(j) 

if(iwork.eq.3) ecco3(i,j) = sqrt(lon(j)*lon(j) + lat(j)*lat(j)) 

114 continue 

do 213 jj = npts+1, Ipts 

lon(jj) = 0.0 

213 continue 

do212 jjj = 1, Ipts 

data(2*jjj-l) = lon(ijj) 
data(2*jjj) = 0.0 

212 continue 

call four 1 (data,Ipts, 1) 

if (i.eq.l6) goto 650 
goto 652 

650 open( 13 ,file='ascan_four') 

do 651 j = 1, Ipts 
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rdata(2*j-l) = data(2*j-l) 
rdata(2*j) =data(2*j) 

write(13,*) j,sqrt((rdata(2*j-l))**2 + (rdata(2*j))**2) 

651 continue 

call fourl(rdata,lpts,-l) ! Inverse FFT of record 16. 

open( 14,file='ascan_inv') 
do 751 j = 1, npts 

751 write(14,*)j ,rdata(2*j-l)/Ipts 

open(15,file='ascan_raw') 
do 752 j = 1, npts 

752 vmte(15,*) j,lon(j) 

C 

652 do 214 ji = 1, Ipts 

eccol(ji,i) = cniplx(data(2*ji-l),data(2*ji)) 

214 continue 

115 continue 

close(l) 

C 

open( 17 ,file='ecco 1 .d') 

do 177 j = 1, nrec 
177 write(17,*) (real(eccol(j,i)),i=l,nrec) 

close(17) 

C 
C 
c 

type*; ' 
type*,' Which geometry would you like to use in order' 
type*,' to test the robustness of the interpolating' 
type*,' filter created by the beamformer using the ' 
type*,' finite element data:' 
type*,' ' 
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type*,' 1. Experimental data (Plexi or Gr/Ep)' 
type*,' 2. Reversed FE geometry' 
type*,' ' 
read*, igeom 

if(igeom.eq.l) goto 210 
goto 211 

210 type*,' ' 
type*,' Enter the name of the sectioned experimental data file' 
type*,' ' 
read '(a)',filename 

open(2,file=filename) 

mpts = 2048 

goto 290 

211 type*,' ' 
type*,' Enter the name of the reversed FEM geometry data file' 
type*,' ' 
read '(a)',femnamel 

open(2,file=femnamel) ! This file contains the same 
! FEM data but in reversed record 
! order (38,37,...,1) 

mpts = Ipts 

goto 291 

C 

290 type*,' ' 
type*,' READING THE EXPERIMENTAL DATA....' 
type*,' ' 

read(2,*) nrl,nr2 

type*,' ' 
write(*,*) 'This set contains records',nrl,' to',nr2 
type*,' ' 

do 990 i = 1, nrec 
do 991 j = 1, mpts 

read(2,*) lonl(j) 
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ecc2(io) = Ionl(j) 

991 continue 

do 992 j = 1, mpts 

datl(2*j-l) = lonl(j) 
datl(2*j) = 0.0 

992 continue 

call fourl(datl,mpts,l) 

do 993 j = 1, mpts 

eccl(j,i) = cmplx(datl(2*j-l),datl(2*j)) 

993 continue 
990 continue 

goto 292 

C 

291 type*,' ' 
type*; READING THE REVERSED FEM DATA....' 
type*,' ' 

do 790 i = 1, nrec 
do 791 j = 1, npts 

read(2,*) lonl(j),dummy 

ecc2(ij) = lonl(j) 

791 continue 

do 792 j = npts+1, Ipts 

lonl(j) = 0.0 

792 continue 

do 793 j = 1, Ipts 

datl(2*j-l) = lonl(j) 
datl(2*j) = 0.0 
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793 continue 

call fourl(datl,lpts,l) 

do 794 j = 1, Ipts 

eccl(j,i) = cmplx(datl(2*j-l),datl(2*j)) 

794 continue 
790 continue 

C 

292 close(2) 

C 
C 

type*; ' 
type*,' DONE READING THE PULSE-ECHOS....' 
type*; ' 

C 

type*,' ' 
type*,'Are you willing to perform BEAMFORMING? (1—yes)' 
type*,' ' 
read*,ibeam 

if(ibeam,eq.l) goto 67 
goto 68 

C 
C-—BEAMFORMING PORTION OF PROGRAM 
C 

67 type*,' ' 
type*,' ' 
type*,' BEAMFORMING IS IN PROGRESS....PATIENCE!!!' 
type*,' ' 

C 

do 225 i = 1, nrec I Initializing input and output. 
do 224 j = 1, Ipts 

x(j,i) = 0.0 
y(j.i) = o.o 
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224 continue 
225 continue 

do 994 i = 1, nrec 
do 995 j = 1, mpts 

xl(j,i) = 0.0 

995 continue 
994 continue 

type*,' ' 
type*,' What percentage of the whole record array' 
type*,' would you like to keep:' 
type*,' ' 
type*,' 0. 100% (Keep the full record)' 
type*,' 1. 50% (Keep the odd records)' 
type*,' 2. 50% (Keep the even records)' 
type*,' 3. 26% (Approximately)' 
type*,' 4. 13% (Approximately/ 
type*,' 5. 3% (Approximately)' 
type*,' ' 
type*,' in the X matrix.' 
type*,' ' 
read*,iperc 

if (iperc.eq.O) goto 814 
if (iperc.eq.l) goto 815 
if (iperc.eq.2) goto 816 
if (iperc.eq.3) goto 817 
if (iperc.eq.4) goto 830 
if (iperc.eq.5) goto 818 

814 do 624 i = 1, nrec 
do 625 j = 1, Ipts 

x(j,i) = eccol(j,i) 

625 continue 
624 continue 

do 996 i = 1, nrec 
do 997 j = 1, mpts 

xl(j,i) = eccl(j,i) 
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997 continue 
996 continue 

goto 819 

C 

815 do 227 i = 1, nrec/2 
do 226 j = 1, Ipts 

x(j,2*i-l) = eccol(j,2*i-l) ! Odd Records. 

226 continue 
227 continue 

do 998 i = 1, nrec/2 
do 999 j = 1, mpts 

xl(j,2*i-l) = eccl(j,2*i-l) 

999 continue 
998 continue 

goto 819 

C 

816 do 909 i = 1, nrec/2 
do 910 j = 1, Ipts 

x(j,2*i) = eccol(j,2*i) ! Even Records. 

910 continue 
909 continue 

do 890 i = 1, nrec/2 
do 891 j = 1, mpts 

xl(j,2*i) = eccl(ji2*i) 

891 continue 
890 continue 

goto 819 

C 

817 type*,' ' 
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type*,' 26% of the 38 records means you can' 
type*,' only keep 10 records.' 
type*,' ' 
type*,' Please enter the 10 records you would like to keep:' 
type*,' (All on one line)' 
type*,' ' 
read* ,ir 1 ,ir2,ir3 ,ir4,ir5 ,ir6,ir7 ,ir8,ir8 ,ir 10 

do 912 j = 1, Ipts 

x(j,irl) = eccoKj.irl) 
xQ,ir2) = eccolQ,ir2) 
x0,ir3) = eccol0,ir3) 
xO,ir4) = eccolO,ir4) 
x0,ir5) = eccolO.irS) 
xQ,ir6) = eccolO,ir6) 
xO",ir7) = eccolO.ir?) 
x0,ir8) = eccolO.irS) 
xO,ir9) = eccolO,ir9) 
xO.irlO) = eccol(j,irlO) 

912 continue 

do 892 j = 1, mpts 

xl(j,irl) = eccl(j,irl) 
xlQ,ir2) = eccl(],ir2) 
xlO,ir3) = eccl0,ir3) 
xl^,ir4) = ecclQ,ir4) 
xlO,ir5) = eccl0,ir5) 

' xlQ,ir6) = ecclO,ir6) 
xlO,ir7) = ecclO.ir?) 
xl^,ir8) = ecclQ,ir8) 
xlO,ir9) = ecclO,ir9) 
xl^.irlO) = eccl(j,irlO) 

892 continue 

goto 819 

830 type*,' ' 
type*,' 13% of the 38 records means you can ' 
type*,' only keep 5 records.' 
type*,' ' 
type*,' Please enter the 5 records you would like to keep:' 
type*,' (All on one line)' 
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type*,' ' 
read*,irl ,ir2,ir3,ir4,ir5 

do 832 j = 1, Ipts 

x(j,irl) = eccol(j,irl) 
x(],ir2) = eccolO,ir2) 
x0,ir3) = eccol0,ir3) 
xO,ir4) = eccol^,ir4) 
xO.irS) = eccolQ,ir5) 

832 continue 

do 893 j = 1, mpts 

xl(j,irl) = eccl(j,irl) 
xlQ,ir2) = eccl^,ir2) 
xl^,ir3) = eccl^,ir3) 
xlO,ir4) = eccl(j,ir4) 
xlO,ir5) = ecclO,ir5) 

893 continue 

goto 819 

818 type*,' ' 
type*,' 3% of the 38 records means you can ' 
type*,' only keep 1 record.' 
type*,' ' 
type*,' Please enter the one record you would like to keep:' 
type*,' ' 
read*,ir 

do 913 j = 1, Ipts 

x(j,ir) = eccol(j,ir) 

913 continue 

do 894 j = 1, mpts 

xl(j,ir) = eccl(j,ir) 

894 continue 
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819 do 750 i = 1, nrec 
do 760 j = 1, Ipts 

xx(j,i) = x(j,i) 

760 continue 
750 continue 

C 
C 

type*; ' 
type*,' Would you like to keep:' 
type*,' ' 
type*,' 0. The full material geometry (i.e., all A-scans)' 
type*,' 1. 50% of the A-scans (Keep the odd records)' 
type*,' 2. 50% of the A-scans (Keep the even records)' 
type*,' 3. 26% of the A-scans (Approximately)' 
type*,' 4. 13% of the A-scans (Approximately^ 
type*,' 5. 3% of the A-scans (Approximately)' 
type*,' ' 
type*,' for the Y matrix.' 
type*,' ' 
type*,' Suggestion: Keep the full geometry (i.e., choose 0)' 
type*,' ' 
read*jkeep 

ifQkeep.eq.O) goto 820 
ifQkeep.eq.l) goto 821 
if^keep.eq.2) goto 822 
ifOkeep.eq.3) goto 823 
ifQkeep.eq.4) goto 884 
if^keep.eq.5) goto 885 

820 do 414 i = l, nrec 
do 413 j = 1, Ipts 

y(j,i) = eccol(j,i) 

413 continue 
414 continue 

goto 824 

C 
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821 do 9141=1, nrec/2 
do 915 j = 1, Ipts 

y(j,2*i-l) = eccol(j,2*i-l) ! Odd records. 

915 continue 
914 continue 

goto 824 

822 do 916 i = 1, nrec/2 
do 917 j = 1, Ipts 

y(j,2*i) = eccol(j,2*i) ! Even Records. 

917 continue 
916 continue 

goto 824 

823 type*,' ' 
type*,' 26% of the 38 records means you can' 
type*,' only keep 10 records.' 
type*,' ' 
type*,' Please enter the 10 records you would like to keep:' 
t^e*,' (All on one line)' 
type*,' ' 
read* ,ir 1 ,ir2,ir3,ir4,ir5,ir6,ir7 ,ir8,ir8 ,ir 10 

do 919 j = 1, Ipts 

y(j,irl) = eccol(j,irl) 
yO,ir2) = eccolO,ir2) 
y0,ir3) =eccol0.ir3) 
yO,ir4) = eccol^,ir4) 
yO.irS) = eccol0,ir5) 
yO,ir6) = eccol^,ir6) 
y0,ir7) = eccol^,ir7) 
y(],ir8) = eccol0,ir8) 
yO,ir9) = eccolO,ir9) 
yO.irlO) = eccol(j,irlO) 

919 continue 
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goto 824 

884 type*,' ' 
type*,' 13% of the 38 records means you can ' 
type*,' only keep 5 records.' 
type*,' ' 
type*,' Please enter the 5 records you would like to keep:' 
type*,' (All on one line)' 
type*,' ' 
read*,ir 1 ,ir2,ir3,ir4,ir5 

do 882 j = 1, Ipts 

y(j,irl) = eccol(j,irl) 
yO,ir2) = eccolO,ir2) 
y0,ir3) = eccol0,ir3) 
yO,ir4) = eccol(j,ir4) 
y0,ir5) = eccolO.irS) 

882 continue 

goto 824 

885 type*,' ' 
type*,' 3% of the 38 records means you can' 
type*,' only keep 1 record.' 
type*,' • 
type*,' Please enter the one record you would like to keep:' 
type*,' ' 
read*,ir 

do 886 j = 1, Ipts 

y(j,ir) = eccol(j,ir) 

886 continue 

824 open(70,file='x.d') 
open(80,file='y.d') 
open(81,file='xl.d') 

do 777 j = 1, nrec 
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111 write(70,*) (real(x(j,i)),i= 1 ,nrec) 
close(70) 

do 888 j = 1, nrec 
888 write(80,*) (real(y(j,i)),i=l.nrec) 

close(80) 

do 828 j = 1, Ipts 
828 write(81,*) (real(xl(j,i)),i=l,nrec) 

close(81) 

C 

k = 0 

do 228 i = 1, nrec ! X is Hermitian. 
do 229 j = 1, Ipts 

k = k + 1 

xr(k) = real(x(j,i)) 
xi(k) = -aimag(x(j,i)) 

229 continue 
228 continue 

C 

type*; ' 
type*,' TRANSPOSING X 

call inatrans(lpts,nrec,xr) 
call matransOpts.nrec.xi) 

type*,' ' 
type*,' FINISHED TRANSPOSING X 

C 

k = 0 

do 231 j = 1, Ipts 
do 232 i = 1, nrec 

k = k + 1 

xt(i j) = cmplx(xr(k),xi(k)) 
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232 continue 
231 continue 

C 

open(90,file='xt.d') 
do 7991 = 1, nrec 

799 write(90,*) (real(xt(ij))j=l,nrec) 
close(90) 

C 

type*,' ' 
type*,' Multiplying xt * x' 
type*,' ' 

call brainy(nrec,lpts,l,xt,lpts,nrec,l,x,prod) 

do 567 i = 1, nrec 
do 568 j = 1, nrec 

prodl(j,i) = prod(j,i) 

568 continue 
567 continue 

C 

Determining the Pseudo-Inverse ' 

x+ = inv(xt * x)' 

The Pseudo-inverse can be written as:' 

x+ = V * diag(l/s) * Ut' 

Calling the Singular Value Decomposition program' 

! Subroutine CSVDC is taken from UNPACK, 

call csvdc(prod,nrec,nrec,nrec,s,e,u,nrec,v,nrec,workjob,info) 

C 

type*,' ' 

type*,' • 
type*,' 
type*,' ' 
type*,' 
type*,' ' 
type*,' 
type*,' ' 
type*,' 
type*,' ' 
type*,' ' 
type*,' ' 
type*,' 

job =11 
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type*,' job =',job 
info = ',info type*,' 

type*,' ' 
type*,' ' 

* ' 

C 

open(40,file='svd_u.d') 
do 401 j = 1, nrec 

401 write(40,*) (real(u(j,i)),i= 1 ,nrec) 
close(40) 

open(21 ,file='svd_v.d') 
do 402 j = 1, nrec 

402 write(21,*) (real(v(j,i)),i=l,nrec) 
close(21) 

open(22,file='svd_s.d') 
write(22,*) (real(s(i)),i=l,nrec) 
close(22) 

open(71 ,file='svd_e.d') 
write(71,*) (real(e(i)),i=l,nrec) 
close(71) 

do 742 j = 1, nrec 

k  =  k + l  

ur(k) = real(u(j,i)) 
ui(k) = -aimag(u(j,i)) 

742 continue 
741 continue 

type*,' ' 
type*,' Transposing the Right Singular matrix V 
type*,' ' 

call matrans(nrec,nrec,ur) 
call matrans(nrec,nrec,ui) 

C 

k = 0 

do 741 i = 1, nrec ! U is also Hermitian. 

C 
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ns = ns + 1 

ssuml = 0.0 
tsuml = 0.0 

do 656 j = 1, ns 

ssuml = ssuml + (s(j) * s(j)) 
tsuml = tsuml + s(j) 

656 continue 

ratio 1 = ssuml / ssum 
ratio = tsuml / tsum 

type*,iyratio,ratiol 

655 continue 

C>»»»»»»»»»»»»» 
C» Writing s(i) in matrix form » 
C»»»»»»»»»»»»»> 

type*,' ' 
type*; ' 
type*,' Enter the number of eigenvalues to use:' 
type*,' ' 
read*, neigen 

do 5001 = 1, nrec 
do 501 j = 1, nrec 

if ((i.eq.j) .and. (j.le.neigen) .and. (s(j).ne.O.O)) then 

ss(j,i) = 1 / s(j) 

else 

ss(j,i) = 0.0 

end if 

501 continue 
500 continue 

open(52,file='svd_ss.d') 
do 667 j = 1, nrec 

667 write(52,*) (real(ss(j,i)),i=l,nrec) 
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close(52) 

type*,' ' 
type*,' ' 
type*,' Multiplying V * diag(l/s)' 

call brainy(nrec,nrec, 1 ,v,nrec,nrec, 1 ,ss,subinv) 

open(l 6,file='subinv.d') 
do 852 j = 1, nrec 

852 write(16,*) (real(subinv(j,i)),i=l,nrec) 
close(16) 

type*,' ' 
type*,' Multiplying V * diag(l/s) * Ut = inv(xt * 

C»»»»»»»»»»»»»»»» 
C» This is the Pseudoinverse of (xt*x) » 
C»»»»»»»»»»»»»»»» 

call brainy(nrec,nrec,l,subinv,nrec,nrec,l,ut,xinv) 

open(25,file='inv.d') 
do 902 j = 1, nrec 

902 write(25,*) (real(xinv(j ,i)),i= 1 ,nrec) 
close(25) 

type*,' ' 
type*,' Multiplying inv(xt * x) * xt' 

call brainy (nrec,nrec, 1 ,xinv,nrec,lpts, 1 ,xt,prod2) 

type*,' ' 
type*,' Multiplying inv(xt * x) * xt * y = filter' 

call brainy(nrec,lpts, 1 ,prod2,lpts,nrec, 1 ,y,filter) 

open(27,file='filter.d') 

do 904 i = 1, nrec 
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do 809 j = 1, nrec 

write(27,*) filter(j,i) 

809 continue 
904 continue 

close(27) 

type*,' ' 
type*,' Multiplying x * filter' 

call brainy(Ipts,nrec, 1 ,xx,nrec,nrec, 1 ,filter,out) 

open(28,file='out.d') 
do 905 j = 1, nrec 

905 write(28,*) (real(out(j,i)),i=l,nrec) 
close(28) 

C» This portion convolves the filter found from the previous » 
C» geometry with a different record geometry (reversed FE or » 
C» experimental data). This is done to check the robustness » 
C» of tiie filter. » 

type*,' ' 
type*,' Multiplying xl * filter' 

call brainy(mpts,nrec, 1 ,x 1 ,nrec,nrec, 1 ,filter,out 1 ) 

open(82,file='out 1 .d') 
do 906 j = 1, nrec 

906 write(82,*) (real(out 1 (j ,i)),i= 1 ,nrec) 
close(82) 

type*,' ' 
type*,' ' 

C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
C»»»»»»»»»»»»»»»»»»»»»»»»» 
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type*,' INVERSE FFT 
type*, * ' ' 

do 235 i = 1, nrec ! Regular FEM Geometry. 

do 233 j = 1, Ipts 

datai (2*j-l) = real(out(j,i)) 
datai (2*j) = aimag(out(],i)) 

233 continue 

call fourl(datal,lpts,-l) 

do234jj = 1, npts 

necco(ijj) = datal(2*jj-l) / Ipts 

234 continue 

235 continue 

C 

if(igeom.eq.l) goto 690 
goto 691 

do 896 j = 1, mpts 

dat2(2*j-l) =real(outl(j,i)) 
dat2(2*j) = aimag(outl(],i)) 

896 continue 

call fourl(dat2,mpts,-l) 

do 897 j = 1, mpts 

neccl(ij) = dat2(2*j-l) / mpts 

897 continue 

895 continue 

C 

690 do 895 i = 1, nrec ! Experimental Geometry. 
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goto 692 

C 

691 do 490 i = 1, nrec ! Reversed FEM Geometry. 

do 491 j = 1, mpts 

dat2(2*j-l) = real(outl(j,i)) 
dat2(2*j) = aimag(outl(],i)) 

491 continue 

call four 1 (dat2,mpts,-1) 

do492jj = 1, npts 

neccl(ijj) = dat2(2*jj-l) / Ipts 

492 continue 

490 continue 

C 

692 type*,' ' 
type*,' INVERSE FFT DONE ' 
type*,' ' 
type*,' ' 
type*,' WRITING DATA OUT TO FILES ' 

C 

open( 11 ,file='ascanl ') ! Regular FEM Geometry. 

do 447 i = 1, nrec 
do 446 j = 1, npts 

write(ll,*) ecco2(i,j),necco(ij) 

446 continue 
447 continue 

close(ll) 

suma = 0.0 
sumb = 0.0 
suml = 0.0 
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do 601 i = 1, nrec 
do 602 j = 200 , 600 ! MSE is computed for only the points 

! between 200 and 600 per record. 

a = ecco2(i,j) 
b = necco(i,j) 

aabs = abs(a) 
aa = aabs * aabs 

babs = abs(b) 
bb = babs * babs 

suma = suma + aa 
sumb = sumb + bb 

suml = suml + (a - b) * (a - b) 

602 continue 
601 continue 

xmsel = suml / (nrec*npts) 

ymsel = 100. * (suml / suma) 

type*,' ' 
type*; ' 
type*,' Actual Geometry' 
type*,' ' 
type*,' POWER OF RAW IMAGE =',suma 
type*,' POWER OF NEW IMAGE = ',sumb 
type*,' ' 
type*,' MEAN-SQUARE ERROR = ',xmsel 
type*,' RELATIVE MSE = ',ymsel,'%' 

if(igeom.eq.l) goto 693 
goto 694 

693 type*,' ' 
type*,' Enter the name of the file for the reconstructed' 
type*,' EXPERIMENTAL data' 
type*,' ' 
read '(a)',expdata 
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open(12,file=expdata) ! Experimental Geometry. 

do 695 i = 1, nrec 
do 696 j = 1, mpts 

write(12,*) ecc2(i,j),neccl(ij) 

696 continue 
695 continue 

close(12) 

sumb = 0.0 
sum2 = 0.0 

do 603 i = 1, nrec 
do 604 j = 1, mpts 

c = ecc2(i,j) 
d = neccl(i,j) 

absc = abs(c) 
esq = absc * absc 

sumb = sumb + esq 

sum2 = sum2 + (c - d) * (c - d) 

604 continue 
603 continue 

xmse2 = 100 * (sum2 / sumb) 

type*; ' 
type*,' ' 
type*,' RELATIVE MEAN-SQUARE ERROR (experimental) = ',xmse2.'%' 

goto 494 

694 open(12,flle='ascan2') ! Reversed FEM Geometry. 

do 697 i = 1, nrec 
do 698 j = 1, npts 

write(12,*) ecc2(i,j),neccl(ij) 
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698 continue 
697 continue 

close(12) 

sumc = 0.0 
sumd = 0.0 
sum2 = 0.0 

do 605 i = 1, nrec 
do 606 j = 200,600 

c = ecc2(i,j) 
d = neccl(i,j) 

xcabs = abs(c) 
cc = xcabs * xcabs 

dabs = abs(d) 
dd = dabs * dabs 

sumc = sumc + cc 
sumd = sumd + dd 

sum2 = sum2 + (c - d) * (c - d) 

606 continue 
605 continue 

xmse2 = sum2 / (nrec * npts) 

ymse2 = 100. * (sum2 / sumc) 

type*; ' 
type*; ' 
type*; 
type*; ' 
type*; 
type*; 
type*; ' 
type*; 
type*; 
type*; ' 

POWER OR RAW IMAGE =',sumc 
POWER OF NEW lAMGE =',sumd 

MEAN-SQUARE ERROR =',xmse2 
RELATIVE MSE =',ymse2;%' 

Reversed Geometry' 

C— 

494 type*; ' 
type*; FINISHED WRITING DATA 
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type*,' ' 
type*,' ' 
type*,' BEAMFORMING HAS SUCCESSFULLY ENDED ! ! ! ' 
type*,' ' 

C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
C»»»»»>»»»»»»»»»»»»»»>»»»»» 
C<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

74 stop 
end 
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APPENDIX C. OTHER PROGRAMS AND SUBROUTINES 
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subroutine four! (data,nn.isign) 

g******************************************************* 
c ** 

** 

** 

** 

** 

** 

** 

** 

** 

c This subroutine replaces 'data' by its Discrete Fourier 
c Transform, if 'isign' is 1; or replaces 'data' by 'nn' times 
c its inverse DPT, if 'isign' is -1. 'data' is a complex array 
c of length 'nn' or, equivalently, a real array of length 2*nn. 
c 'nn' MUST be an integer power of two. 
c 
c From: Numerical receipes in FORTRAN. 
c 
Q******************************************************* 

real*8 wr,wi,wpr,wpi,wtemp,theta ! double precision for the trigo-
! nometric recurrences. 

dimension data(2*nn) 

n = 2 * nn 
j = l  

do 11 i = 1, n, 2 

if(j.gt.i) then 

tempr = data(j) 
tempi = data^+l) 
data(j) = data(i) 
dataQ'+l) = data(i+l) 
data(i) = tempr 
data(i+l) = tempi 

end if 
m = n /2 

1 if((m.ge.2) .and. (j.gt.m)) then 

j = j - m  
m  =  m / 2  

goto 1 

end if 

! Perform bit-reversal. 

! Exchange the two complex numbers. 

j = j + m  

11 continue 

mmax = 2 ! Here begins the Danielson-
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! Lanczos section of the routine. 
2 if(n.gt.mmax) then ! Outer loop executed log(base2)nn times. 

istep = 2 * mmax 
theta = 6.28318530717959D0 / (isign*mmax) ! initializing for the 
wpr = -2.D0 * dsin(0.5D0 * theta) ** 2 ! trig recurrence, 
wpi = dsin(theta) 
wr = l.DO 
wi = 0.D0 

do 13 m = 1, mmax , 2 
do 12 i = m, n , istep 

j = i + mmax 

! This is the Danielson-Lanczos formula: 

tempr = sngl(wr) * data(j) - sngl(wi) * data(j+l) 
tempi = sngl(wr) • data^+1) + sngl(wi) * data(j) 
dataQ) = data(i) - tempr 
dataQ+l) = data(i+l) - tempi 
data(i) = data(i) + tempr 
data(i+l) = data(i+l) + tempi 

12 continue 

wtemp = wr ! trigonometric recurrence, 
wr = wr * wpr - wi * wpi + wr 
wi = wi * wpr + wtemp * wpi + wi 

13 ' continue 

mmax = istep 

goto 2 

end if 

return 
end 

function dot(l,j,x,y) 

real x(2048),y(2048) 
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dot = 0.0 

if(l.le.O) return 

d o  l i j  =  j ,  1 + j - l  

1 dot = dot + x(ij) * y(ij) 

return 
end 

Q*************************************************************** 

subroutine zero(lx,x) 

complex x(lx) 

if(lx.le.O) return 

do 1 i = 1, Ix 

1 x(i) = 0.0 

return 
end 

Q************************************************************** 
Q************************************************************** 

subroutine matrans(m,n,matrix) 

c 
c- This subroutine transposes a rectangular matrix. — 

C-- m = number of rows in matrix. 
C-- n = number of columns in matrix, 
c 

dimension matrix(l) 

k  =  m * n - 1  

do li = 2, k 

1 matrix(i) = (matrix(i) / 2 ) * 2 

do 3 1 = 2, k 
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if(matrix(l) .ne. (matrix(l)/2)*2) goto 3 

keep = matrixO) 

ij = 1 

2 jlessl = (ij-l)/m 

i = ij - jlessl * m 
j = jlessl + 1 

ji = j + (i -1) * n 

katch = matrix(ji) 

matrix(ji) = keep + 1 

keep = katch 

ij=ji 

if(ij.ne.l) goto 2 

3 continue 

return 
end 

Q*************************************************************** 

subroutine matrinv(n,a,ainv,det,adjug,p) 

c 
c~ This subroutine inverts a (not necessarily symmetric) 
C-- n x n matrix, a, by a method given by Faddeev and 
C-- Sominskii. The method is described in Gantmacher. In — 
c- addition to the inverting the matrix, the method also 
c~ yields the determinant, the adjugate, and the coeffi-
c- cients of the characteristic polynomial, det(LI-a). 
Ç— --
c- n = order of matrix. 
C-- a = n X n matrix. 
C-- ainv = inverse of a. 
c~ det = determinant of a. 
C-- adjug = adjugate of a. 
C-- p = coefficients of characteristic polynomial. 
c 
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complex a(n,n),ainv(n,n),det,adjug(n,n),p(n) 

call move(n,a,ainv) 

do 4 k = 1, n 

p(k) = 0.0 

do 2 i = 1, n 

2 p(k) = p(k) + ainv(i,i) 

p(k) = p(k) / float(k) 

if(k.eq.n) goto 5 

call move(n,ainv,adjug) 

do 3 i = 1, n 

3 adjug(i,i) = ainv(i,i) - p(k) 

4 call brainy(n,n,l,a,n,n,l,adjug,ainv) 

5 call move(n,adjug,ainv) 

if(cabs(p(n)) .It. l.Oe-30) goto? 

do 6 i = 1, n 
' do 6j = 1, n 

6 ainv(ij) = ainv(i J) / p(n) 

7 det = p(n) 

if(mod(n,2) .eq. 1) return 

det = -det 

do 8 i = 1, n 
do 8 j = 1, n 

8 adjug(i,j) = -adjug(ij) 

return 
end 
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Q**************************************************************** 

subroutine inverse(n,a,b) 

complex ek 
complex a(n,n),b(n,n) 

do 5 i = 1, n 
do 5 j = 1, n 

5 b(i,j) = 0.0 

b ( l , l ) = l . / a ( l , l )  

if(n.eq.l) return 

do 40 m = 2 , n 

k  =  m - 1  

ek = a(m,m) 

do 10 i = 1, k 
do 10 j = 1, k 

10 ek = ek - a(m,i) * b(ij) * a(j,m) 

b(m,m) = 1. / ek 

do 30 i = 1, k 
do 20 j = 1, k 

20 b(i,m) = b(i,m) - b(i,j) * a(j,m) / ek 

30 b(m,i) = b(i,m) 

do 40 i = 1, k 
do 40 j = 1, k 

40 b(ij) = b(ij) + b(i,m) * b(m,j) * ek 

return 
end 

Q**************************************************************** 

Q**************************************************************** 

subroutine move(lx,x,y) 
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c 
c~ The purpose of this subroutine is to move an array 
c~ from one storage location to another. 
c-

complex x(lx,lx),y(lx,lx) 

d o  l i  =  1 , I x  
do 1 j = 1, Ix 

1 yOo) = x(i,j) 

return 
end 

subroutine brainy(nra,nca,la,a,nrb,ncb,lb,b,c) 

c 
c~ This subroutine performs matrix polynomial multipli-
c~ cation. Because polynomial multiplication corresponds --
c~ to complete transient convolution, then this subroutine — 
c- performs the complete transient convolution of two 
c~ multichannel signals. 

c~ This subroutine allows the use of rectangular matrices. -
Q—— —— 
C-- nra = number of rows of matrix a = p. 
C-- nca = number of columns of matrix a = q. 
c~ la = length of multichannel signal a = m+1. 
C-- a = (aO,al,...,am), where each coefficient ai, 
C-- is a p X q constant matrix. 
Q»» —— 
c— nrb = number of rows of matrix b = q. 
c- neb = number of columns of matrix b = r. 
c~ lb = length of multichannel signal b = n+1. 
C-- b = (bO,bl,...,bn), where each coefficient bi, 
c~ is a q X r constant matrix. 

C-- c = (cO,cl,..„c(m+n)), is the output, 
c 

complex a(nra,nca,la),b(nca,ncb,lb),c(nra,ncb, 1 ) 

Ic = la + lb -1 



www.manaraa.com

196 

call zero(nra*ncb*lc,c) 

do 1 i = 1, la 
do 1 j = 1, lb 

k = i + j - 1  

do 1 m = 1, nra 
do 1 n = 1, neb 
do 11 = 1, nca 

1 c(m,n,k) = c(m,n,k) + a(m,l,i) * b(l,n,j) 

return 
end 
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